For help, comments, and/or suggestions, please contact:

James M. Krstulovich, Jr.
IDOT Bureau of Materials and Physical Research
126 East Ash Street
Springfield, Illinois 62704
Phone: (217) 782-7200
e-mail: DOT.PCCMIX@illinois.gov

!!! IMPORTANT !!! This spreadsheet utilizes macros. Depending on Excel’s security settings, the macros may not be enabled. To change the macros settings for Excel, refer to the steps found at the end of this tutorial.

General
This spreadsheet is designed to calculate and report PCC mix designs for submittal to IDOT. The spreadsheet is comprised of data inputs based on the mix design methodology provided in the PCC Level III Technician course manual.

Buttons are provided for ease of navigation, and their use is recommended as they ensure proper operation throughout the design process. Using the worksheet tabs, found at the bottom of the Excel screen, will also work.

The blue-shaded areas are cells which require data input, green-shaded areas are optional (unless required by your District), and white cells are calculation fields, which are password protected from accidental overwriting.

Throughout the spreadsheet, comments have been interspersed to offer hints on where to find relevant information. To view comments, hold the cursor over the red tags found in the upper right hand corner of commented cells, as shown below. These comments generally refer to sections of the Course Manual; however, it should be noted that the Department’s Standard Specifications and Special Provisions take precedence.

Figure 1. Example of a comment; note red flag, which indicates the cell has a comment.

Tutorial Mix Design
This tutorial also includes notes for how to input the example mix design discussed in Section 2.9 of the Course Manual. If you follow the notes in order as they are presented herein, you should successfully create a basic PCC paving mix design while also being introduced to many of the spreadsheet’s functions and capabilities.
Step 1. Design Information

The Design Information worksheet is important to establish the who-what-where of the mix design. This is where the designer decides in which units of measure the mix will be designed, what type of concrete it is, for what Classes of concrete it is valid, and those responsible for the mix design.

Fit to Screen [button]: Click this button to optimize each page of the mix design spreadsheet for viewing on your screen.

English/Metric [toggle]: Toggle button for selecting the units of measure for the mix design’s inputs. All data inputs will have to be entered in the chosen units of measure. However, the design will be reported in both units of measure on the different final mix design reports generated.

EXAMPLE PROBLEM
Assuming most of us are more comfortable using English units of measure (lbs, yd³, etc.), the example mix design will be designed using English units.

Click on the **ENGLISH** toggle button.

Mix Design No.: Alphanumeric designation (up to nine characters in length). This is the Producer's or Contractor's self-designated mix design number; this is not the mix design number assigned by IDOT, see “IDOT Mix Design No.” below.

EXAMPLE PROBLEM
Because this is the Producer's or Contractor's mix design number, any reasonably succinct and unique identifier can be used here, as long as it is no more than nine characters long. For this example, we will use **PMC0001PV** (i.e., Pave Masters Co. paving mix #1).

IDOT Mix Design No.: Nine character alphanumeric mix design number reported to the Department's MISTIC database. This number will be assigned by your District to an approved mix design.

EXAMPLE PROBLEM
Because this mix design number is assigned by the District upon approval, this cell reads **Not yet assigned**.

Date Created: The date the mix design was created.
Step 1. Design Information (continued)

Concrete Code: Select the appropriate material code. This code is used by the Department's MISTIC database to designate the type of concrete.

- **EXAMPLE PROBLEM** Because this mix will utilize Type I portland cement and Class C fly ash, the appropriate Concrete Code to select from the drop-down list is **21605**.

Class: Select up to five Classes of concrete.

- **EXAMPLE PROBLEM** Because this mix will be used for a continuously reinforced portland cement concrete pavement, the appropriate Class to select is **PV**.

Responsible Location: District responsible for mix design's use; for example, “91” for District 1.

- **EXAMPLE PROBLEM** Select one of the nine IDOT Districts with which you typically work; for example, select **91** if you often work with District 1 in the Chicago area.

Lab: Laboratory associated with the creation and/or testing of the design. For example: DI for district mix designs, or PP for producer mix designs. Contractors and Producers are to use "Producer" Lab codes. Consultants are to use "Independent" Lab codes.

Company Name: Name of laboratory responsible for creation and/or testing of mix design.

Location: Nearest municipality to Lab/Company.

Designer: Name, phone number, and email of person that created the design.

Mix Design Producer: MISTIC producer number and name of producer.

IDOT Engineer: This is the IDOT District representative to whom this mix design should be submitted for approval. Consult your District's Mixtures Control Engineer for more information. Use the yellow table to the right of the main input area to add names to the drop-down list.

Contract No.: (Optional) Either the five digit contract number, or if it is a local agency contract without a five digit number, then enter the MFT (Motor Fuel Tax) contract number.
Step 2. Design Variables

The Design Variables worksheet is where the designer first begins to determine the mix design’s parameters that factor into the mix design’s proportion calculations.

Batch Size:
Batch size in cubic yards (cubic meters). All mix designs are created per 1 yd³ (1 m³).

Cement Factor:
Cement quantity in hundredweight per cubic yard (kilograms per cubic meter). Adjustments based on admixture use or underwater placement can be applied using the Cement Factor Adjustment table.

From Table 2.2.1 in the Course Manual, the cement factor for Class PV concrete from a central mixed plant is 5.65 cwt/yd³.

Also, from Section 2.2.2, a cement factor reduction of 0.30 cwt/yd³ can be applied because a water-reducing admixture will be used. Enter 0.30 in the appropriate box of the Cement Factor Adjustment table.

Thus, the final, adjusted cement factor is reduced to 5.35 cwt/yd³.

Mortar Factor:
Refer to Table 2.8.2.3 Design Mortar Factor in the Course Manual.

From Table 2.8.2.3 in the Course Manual, a mortar factor can be selected for Class PV concrete.

Enter 0.83 as a reasonable starting point.

Target Air Content:
Percentage of entrained air in the concrete to improve durability. Refer to Table 2.7.1 Air Content in the Course Manual.

From Table 2.7.1 in the Course Manual, the midpoint of the air content range for Class PV concrete is 6.5%.

Target Slump:
Enter the target slump in inches (mm). Refer to Table 6.1 Slump in the Course Manual.

From Table 6.1 in the Course Manual, the slump range for Class PV concrete is 2 to 4 inches, except when slipformed, it is 1/2 to 2 1/2 inches (Table 6.1, Note 1). As noted in Section 6.1, experience has shown that a slump of 1/2 to 1-1/2 inches at the paver is typical for slipformed pavement construction, but many Contractors desire 1-1/2 inches to obtain a smooth pavement. Enter 1.5 inches.
Step 2. **Design Variables** (continued)

Determine Water Content
First, using the toggle switch, select either the *Standard Method* or the *w/c Ratio Method*.

The *Standard* method requires the designer to enter fine and coarse aggregate water requirements, as well as percent water reduction. Refer to Section 2.5.1 *Water Requirement* in the [Course Manual](#) for more information.

Alternatively, the *w/c Ratio Method* will determine mix water based on the water/cement ratio (w/c) entered and the total content of cement and finely divided minerals. No water adjustment needs to be entered as it will be back-calculated based on the w/c ratio and aggregate water requirement inputs.

If the Standard Method has been selected, refer to the following inputs:

![Determine Water Content Interface](image)

FA Type: Select fine aggregate type.

EXAMPLE PROBLEM
Because this mix will utilize a Type “B” fine aggregate, select B from the drop-down list.

FA Water Req.: Water requirement for fine aggregate in gallons per hundredweight (liters per kilogram) of cement and finely divided minerals. This value is based on the type of fine aggregate. For example, 5.1 gal/cwt (0.426 L/kg) is typical for Type “A” fine aggregate, as shown in the table, *Typical FA Water Requirements*.

EXAMPLE PROBLEM
Because this mix will utilize a Type “B” fine aggregate, the typical water requirement is **5.3 gal/cwt**.

CA Water Req.: Water requirement for coarse aggregate in gallons per hundredweight (liters per kilogram) of cement and finely divided minerals material. This value is based on the type of coarse aggregate. Typical values are provided in the table, *Typical CA Water Requirements*.

EXAMPLE PROBLEM
Because this mix will utilize a non-crushed gravel coarse aggregate, the typical water requirement is **0.0 gal/cwt**.

Water Reduction: Percentage of water adjustment (typically a reduction) taking into account various factors, such as admixture use, cement and finely divided mineral content, air content, etc. Note that because this input is referred to as a “reduction”, the value entered may seem counter-intuitive; that is, a water reduction should be entered as a positive value, while a water addition should be entered as a negative value. For example, enter “10.0” for a 10 percent water reduction, and enter “-10.0” for a 10 percent water addition.

For help determining a reasonable water adjustment, click on the button, **Water Adjustment Help**. The Water Adjustment Help tab is modeled after Table 2.5.2 *Adjustment to Basic Water Requirement* in the [Course Manual](#).

EXAMPLE PROBLEM
Because this mix will utilize a water-reducing admixture to provide a target water reduction of 6%, enter **6.0**.

Note: If for some reason this mix needed a 6 percent water addition, you would have entered **-6.0**.
Step 2. Design Variables (continued)

If the W/C Ratio Method has been selected:

| **EXAMPLE PROBLEM** | Another way to determine mix water is based on inputting a target water/cement ratio (w/c):
| | In this example, per Table 2.6.1 in the Course Manual, the maximum w/c for Class PV concrete is **0.42**.
| | Also, by selecting the appropriate fine aggregate type (“B”) and entering a reasonable water requirement for the coarse aggregate, the water reduction will be back-calculated on the final mix design reports. |

Enter W/C Ratio: When \(w/c \) Ratio Method is toggled, this field appears. Enter the target water/cement ratio that the design water will be based on; for example, 0.42.

It is still important to select the appropriate FA Type, as well enter the CA Water Requirement, so as to allow the spreadsheet to back-calculate the water reduction on the final mix design reports.

Fineness Mod:	(Optional) Fineness modulus of the fine aggregate used in the mix design; for example, 2.36. Fineness modulus is for informational purposes only; fineness modulus does not factor into proportioning calculations.
Admixture:	Choose an admixture type: “W – water reducer”, “S – superplasticizer”, or “R – retarder”.
EXAMPLE PROBLEM	Because this mix will utilize a water-reducing admixture to meet the water/cement ratio requirement, select **W – Water Reducer** from the drop-down list.
Fly Ash Class:	Choose the class of fly ash used in the mix design, if applicable.
EXAMPLE PROBLEM	Because this mix will utilize Class C fly ash, select **C** from the drop-down list. If this example did not utilize any fly ash, you would select “n/a”.
Step 3. Aggregate Information

The Aggregate Information worksheet is where the designer enters all fine and coarse aggregate information. Note that although up to six aggregate materials can be accommodated by this spreadsheet, the Department’s MISTIC database only allows a total of six materials, including cement and finely divided minerals. For example, four aggregates, one cement, and one finely divided mineral (e.g., fly ash); or three aggregates, one cement, and two finely divided minerals (e.g., fly ash and microsilica).

Material: Aggregate material codes.
Coarse and fine aggregates may be entered in any order, except as required by your District. For more information regarding aggregate material codes, refer to form BMPR MI504 “Field/Lab Gradations”.

EXAMPLE PROBLEM
- Fine aggregate: Enter 027FA01 as given in the Course Manual. This material code is for an “A” quality natural sand meeting the gradation criteria for FA 1 per Article 1003.01(c).
- Coarse aggregate: Enter 020CA07 as given in the Course Manual. This material code is for an “A” quality non-crushed gravel meeting the gradation criteria for CA 7 per Article 1004.01(c).

Producer Number: Aggregate producer number.
This field is required for all aggregate components.

Producer Name: Aggregate producer name.

Specific Gravity: Saturated Surface Dry (SSD) specific gravity of each aggregate.

EXAMPLE PROBLEM
The example problem as given in the Course Manual indicates that the saturated surface-dry specific gravities for the fine and coarse aggregate components are **2.66** and **2.68**, respectively.
Step 3. Aggregate Information (continued)

Agg. Moisture (%): Moisture of aggregates relative to SSD condition. If the percentage moisture is drier than SSD, it must be entered using a negative value (e.g., -1.00).

EXAMPLE PROBLEM
No aggregate moisture is indicated in the example problem as given in the Course Manual. Thus, it can be left blank.

% Blend: Percent blend for aggregate components. If only using one coarse aggregate and one fine aggregate material, enter “100” for each. On the other hand, if blending coarse aggregate materials, say, CA 11 and CA 16 at 75 and 25 percent, respectively, enter a "75" for the CA 11 and a "25" for the CA 16. Similarly, if blending fine aggregate materials. Do not blend coarse and fine aggregate, except as noted below for CAM II:

Note for CAM II designs only—Recommended % Blend of coarse-to-fine aggregate: 50-50 when using CA 7, CA 9, or CA 11; 75-25 when using CA 6; and 100-0 (i.e. no fine aggregate) when using CA 10. For example, when using CA 6 and FA 1, enter “75” for the CA 6 and “25” for the FA 1.

EXAMPLE PROBLEM
Because this mix is utilizing one coarse aggregate component and one fine aggregate component (and the mix is not CAM II), enter 100 for coarse aggregate and 100 for fine aggregate, as well.

Step 3a. Voids in Coarse Aggregate

The Designer has the option to either enter the Voids directly or calculate Voids by performing ITP 306, Voids Test of Coarse Aggregate for Concrete Mixtures, which can be found in the Manual of Test Procedures for Materials. However, some Districts may provide a value for general aggregate types, such as “0.36” for gravels.

If calculating the Voids, enter the “% Absorption”, “Net Weight of Aggregate”, and “Volume of Measure” as determined while performing ITP 306. Consult your District for “% Absorption” values. (The Calibration of Measure is not required for every mix design, but is included for convenience.)

EXAMPLE PROBLEM
The example problem as given in the Course Manual notes that the Voids for the coarse aggregate is 0.37.
Step 4. Finely Divided Minerals & Admixtures Information
This worksheet is where the designer enters all information pertaining to cement and finely divided minerals, as well as chemical admixtures (e.g. air-entraining water-reducing admixtures, etc.).

4. Cement and Finely Divided Minerals Information

<table>
<thead>
<tr>
<th>Material Code</th>
<th>Producer Number</th>
<th>Producer Name</th>
<th>Specific Gravity</th>
<th>Percent Blend</th>
<th>Replacement Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>37601 Type I</td>
<td>-</td>
<td>Portland</td>
<td>3.150</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>37801 Fly Ash Class C</td>
<td>555-05</td>
<td>City Electric Co.</td>
<td>2.610</td>
<td>25.0</td>
<td>100%</td>
</tr>
</tbody>
</table>

EXAMPLE PROBLEM
Because this mix will utilize a Type I cement and Class C fly ash, Lines 1 and 2 will be used.
- **Cement:** Because this mix is utilizing a Type I cement, select **37601 Type I, Portland** from the drop-down list.
- **Fly ash:** Because this mix is utilizing a Class C fly ash, select **37801 Fly Ash Class C** from the drop-down list.

Producer Number: Material producer number. This field is required for all finely divided minerals.

Producer Name: Material producer name.

Specific Gravity: Specific gravity of each material. The specific gravity of cement is normally assumed to be 3.15. However, for a blended cement, this value should be verified with the District. Specific gravity values for finely divided minerals can be obtained from the [Approved List of Suppliers for Finely Divided Minerals](#).

EXAMPLE PROBLEM
The example problem as given in the [Course Manual](#) notes that the specific gravity for the fly ash component is **2.61**. Although no specific gravity is given for the cement component, from Section 2.3 in the [Course Manual](#), the specific gravity of cement is normally assumed to be **3.15**.
Step 4. Finely Divided Minerals & Admixtures Information (continued)

Percent Blend:
The blend percentage must be entered for each material, totaling 100. For example, when blending fly ash and cement at 20 and 80 percent, respectively, enter a "20" for the fly ash and an "80" for the cement.

EXAMPLE PROBLEM
First, we have to determine if we need to mitigate for alkali-silica reaction (ASR):

From Section 2.4.3 in the **Course Manual**, it is determined that the component aggregates are **Group II** (fine aggregate expansion in the >0.16% - 0.27% range and coarse aggregate expansion ≤0.16%). Thus, we are required to use Mix Option 1, 2, 3, 4, or 5.

Because the example problem as given notes that the mix will utilize a cement with alkali content >0.60% and a Class C fly ash, we will use **Mix Option 2**.

Mix Option 2 requires a minimum 25.0 percent Class C fly ash.

Furthermore, from Section 2.4.1.1 in the **Course Manual**, the Class C fly ash component can replace up to 30 percent of the cement.

Thus, it is decided to use **30 percent** fly ash since fly ash is cheaper than cement, and will provide the most economical mix.

Because the total Percent Blend must equal 100, enter **70.0** for the cement and **30.0** for the fly ash.

Replacement Ratio:
(Optional) Enter the replacement ratio for each finely divided mineral, if applicable. If left blank, the default value of “1.00” will be used.

Step 5. Admixtures Information

Material Code: Enter admixture material codes here. The 5-digit material code for admixtures can be found on the **Approved List of Concrete Admixtures**.

Admixture Type: Choose admixture type.

Admixture Name: Enter admixture product name here.

Remarks: Enter key information regarding proposed dosage rates, dosing procedures, etc.

Step 6. General Mixture Remarks

Remarks: Enter any pertinent information not already covered. When required to mitigate for alkali-silica reaction (ASR), indicate the mixture option selected.

EXAMPLE PROBLEM
Because we are required to mitigate for alkali-silica reaction, we must indicate the mixture option selected.

Enter **ASR Mix Option 2, 30% fly ash**.

Latex Admixture Information (only required for mix designs using a latex admixture)

Batch Dosage: Enter latex admixture dosage in terms of gallons per cubic yard (liters per cubic meter).

Specific Gravity: Enter manufacturer’s specific gravity for the latex admixture.

% Solids: Enter manufacturer’s percent solids for the latex admixture.
Design Report

Given the inputs, the mix design proportions are calculated and reported. Three design reports are generated: one in English units of measure, one in metric (SI), and one formatted per the Department’s MISTIC database requirements. Please consult your District for which report(s) to submit for approval.

ENGLISH UNITS DESIGN REPORT

<table>
<thead>
<tr>
<th>IDOT MIX #</th>
<th>CONTR MIX #</th>
<th>MATERIAL</th>
<th>CLASS</th>
<th>EFFECTIVE</th>
<th>REVIEVED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21605</td>
<td>PMC006PV</td>
<td>CONCRETE PC FLYASH</td>
<td>Py</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METRIC UNITS DESIGN REPORT

<table>
<thead>
<tr>
<th>IDOT MIX #</th>
<th>CONTR MIX #</th>
<th>MATERIAL</th>
<th>CLASS</th>
<th>EFFECTIVE</th>
<th>REVIEVED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>21606M</td>
<td>PMC006PV</td>
<td>CONCRETE PC FLYASH</td>
<td>Py</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: The MISTIC Report has three input fields to be completed upon receiving approval from the District.

Additionally, there is a tab for help determining the percent water adjustment taking into account various factors. However, this table is for informational purposes only. The water adjustment calculated using this table is not referenced by any of the spreadsheet’s mix design calculations. To use the water adjustment calculated using this table, the value must be entered on the Design Variable tab.
Changing Macro Security Settings in Microsoft Excel

Note: Any macro settings changes you make in Excel apply only to Excel and do not affect any other Office program.

To change the macro security settings in Excel 2007/2010:

1. On the **Developer** tab*, in the **Code** group, click **Macro Security**.

2. In the **Macro Settings** category, under **Macro Settings**, click the 2nd option to **Disable all macros with notification**.
 This option initially disables macros, but alerts you if macros are present. This way, you can choose when to enable the macros on a case by case basis.

3. Now, close Excel, and re-open the PCC Mix Design spreadsheet.
 You should now get a **Security Warning** (below), click the **Options** button, then click to **Enable this content**, and finally click **OK** to close the window.

* If the **Developer** tab is not displayed…

Office 2007

1. Click the **Microsoft Office Button**
2. Click **Excel Options** (bottom right corner)
3. In the **Popular** category, under **Top options for working with Excel**, click **Show Developer tab in the Ribbon**.

Office 2010

1. Click the **File** tab, click **Options**, and then click the **Customize Ribbon** category.
2. In the **Main Tabs** list, check the **Developer**, and then click **OK**.
3. Click any other tab to return to your file.
Changing Macro Security Settings in Microsoft Excel
(continued)

Older versions of Excel:

1. To access the macro security settings in older version of Excel, go to the Tools menu, Options, Security tab, and click on the Macro Security button. The Security window will open as shown:

2. Click on Medium, then click OK, and close Excel.

3. Re-open the PCC Mix Design spreadsheet. At Medium, whenever you open a file that has macros, a Security Warning (below) appears: click Enable Macros. The file opens and is a trusted document.