ACCESS METHODS, SAFETY, COORDINATION, TEST EQUIPMENT & MAINTENANCE OF TRAFFIC

Types of Access Equipment

- Under Bridge Inspection Trucks (UBIT)
- Platform Inspection Trucks
- Manlift (Scissor Lift and Boom Lifts)
- Bucket Truck
- Ladder
- Boat
- Technical Climbing
- UAS/Drones
Access Methods, Test Equip. & Maint. of Traffic

Poor Access & Safety Procedures!

Access Methods, Test Equip. & Maint. of Traffic

Under Bridge Inspection Trucks
Access Methods, Test Equip. & Maint. of Traffic

Platform Inspection Trucks

Access Methods, Test Equip. & Maint. of Traffic

Manlift
Access Methods, Test Equip. & Maint. of Traffic

Bucket Truck

[Images of a bucket truck in use]

Access Methods, Test Equip. & Maint. of Traffic

Ladder

[Images of a ladder in use]

9/13/2021
Boats provide access for water-level inspections including soundings for scour measurements.

Access Methods, Test Equip. & Maint. of Traffic

Technical Climbing
Access Methods, Test Equip. & Maint. of Traffic

UAS/Drones

- UAS – Unmanned Aerial System
- UAS/Drones may be used for a recon or initial assessment of conditions at an inspection site
- They do not take the place of arms length inspection requirements
- IDOT still considering policy on their use

Access Methods, Test Equip. & Maint. of Traffic

SAFETY: Do you have the Proper Safety Equipment?

- Hard Hats
- Gloves
- Boots
- Safety Harness
- Protective Eyewear
- Filter Mask (Histoplasmosis)
- Air Meter (Confined Space Entry)
- Air Blowers (Confined Space Entry)
- Water Safety – flotation vest
Access Methods, Test Equip. & Maint. of Traffic

Vaulted Abutment

Avoid one-person inspections due to potential hazards

- Deep / Fast moving water
- Inspections near traffic
- Potential to fall
- Wild or Farm Animals
- Criminal Activity
Access Methods, Test Equip. & Maint. of Traffic

Improve Visibility

- Bridge Washing
 - Improves visibility
 - Saves inspection time
 - Improves insp. quality
 - Preserves the bridge

- Lights & Mirrors
 - Flashlights
 - Floodlights
 - Mirrors

Access Methods, Test Equip. & Maint. of Traffic

Projects Involving Railroads

- Special Agreements (Right of Entry, etc.) may be required
- Flagger
- Advance Notice and Scheduling
- Payment to Railroad may be required to meet some requirements
Private Property Considerations
- Avoid damage to private property
- Obtain permission to use / park on private property during inspection
- Carry identifying credentials
- Avoid excessive “Inspection Graffiti” on structural elements visible to the public and property owners
 - Crayon
 - Paint
 - Permanent Marker

Notifications
- Avoid perception of a “terrorist act” in progress
- Law enforcement notifications
- Coast Guard
- Railroad or other non-highway entities under/near bridge
- Public notification - Press Release prior to work
Test Equipment

- Electronic Distance Measuring
- Smart Levels
- Ultrasonic Thickness Measuring
- Rotary Percussion

Electronic Distance Measuring
- Allows quick measurement
- One person can operate
- Accurate
- Can be hard to see laser over long distances
Access Methods, Test Equip. & Maint. of Traffic

Smart Levels

- Quick measurement of angles
- One person can operate
- Accurate
- Requires a relatively even surface

Access Methods, Test Equip. & Maint. of Traffic

Ultrasonic Thickness Measuring

- Quick measurement of homogenous metal thickness
- Only need access to one side of steel
- Need a relatively clean and smooth surface to measure
Access Methods, Test Equip. & Maint. of Traffic

Rotary Percussion
- Quick inspection of overhead & vertical surfaces
- Detects concrete delaminations
- Easy to use
- Reach limited to +/- 20’

Photo Source: Sounding technology

Access Methods, Test Equip. & Maint. of Traffic

Maintenance of Traffic
- Reference IDOT’s ‘Work Site Protection Manuals’
- Ensure safety of inspectors
- Ensure safety of traffic
- Minimize interference with traffic
- Minimize duration of closure
- Follow appropriate standard for roadway type
 - Expressway
 - Village street
REINFORCED CONCRETE SUPERSTRUCTURES

Item 59 – Concrete Superstructure

- Common Types of Concrete Superstructures
- Deck Condition vs. Superstructure Condition
- Condition Ratings
Item 59 – Concrete Superstructure

Cast in Place Conc. Slabs

- Common since early 1900’s
- “Slab Superstructure” vs. “Deck”
 - Top of the slab superstructure serves as an integral deck
 - Slab superstructures span longitudinally vs. decks that usually span transversely
- Deck (Item 58) shall be rated same as Super (Item 59). The rating is based on the Super criteria

Concrete T-Beams

- Common in 1930’s - 50’s
- Monolithic deck and stem forms the shape of a letter “T”
- Typically cast-in-place construction
- Top flange is considered the Deck (Item 58)
- Deck and stem act together as the superstructure (Item 59)
Item 59 – Concrete Superstructure

Concrete Through Girders

- Common in 1940's, rarely used now
- Monolithic deck supported by a two-girder system
- Deck is cast between girders
- Upper portions of through girders serve as bridge railing
- Even though it is a two-girder system, girders are not FCMs

PC Channel Beam

- Appearance of bridge cross section resembles T-Beam
- Usually made of precast concrete
- Typically not prestressed
- Top flange is considered the Deck (Item 58)
- Deck and stems act together as superstructure (Item 59)
- Deck is integral with the Super. Low Deck (Item 58) rating may adversely affect Super (Item 59) rating, however; Super rating will not affect Deck rating
Item 59 – Concrete Superstructure

3-Sided Precast Structures

- Top may be arched or flat
- Most common version is precast concrete
- Top is considered the Superstructure (Item 59)
- Sides are considered the Substructure (Item 60)
- Deck (Item 58) is coded “N”

Key Indicators

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>VERY GOOD. No significant defects, very minor shrinkage cracks, surface scaling, spalling or pop-outs which do not expose reinforcing steel.</td>
</tr>
<tr>
<td>7</td>
<td>GOOD. Isolated non-structural cracks up to 0.03”, minor pop-outs or spalls without exposed primary reinforcing steel, stirrups may be exposed in a few locations.</td>
</tr>
<tr>
<td>6</td>
<td>SATISFACTORY. Extensive non-structural cracks up to 0.06”, isolated hairline structural cracks, spalls and delaminations may be present on up to 10% of a beam cross section or 6’ width of a slab with exposed primary reinforcement with surface rust only, up to 20% of a beam cross section or 6’ width of a slab may be map cracked, spalled and delaminated, Spalls and delaminations up to 5% on the sides of a beam cross section.</td>
</tr>
<tr>
<td>5</td>
<td>FAIR. Non-structural cracks greater than 0.06”, structural cracks up to 0.03”, spalling with section loss of reinforcing steel up to 10% in a beam or 6’ width of slab, up to 10% of compression surface area spalled or delaminated in a beam cross section or 6’ width of slab. Up to 10% section loss of the concrete cross section.</td>
</tr>
</tbody>
</table>
Item 59 – Concrete Superstructure

Key Indicators
- Cracks
- Scaling
- Spalls/Delams
- Section Loss

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>POOR. Flexural or shear cracks up to 0.06", primary reinforcing steel exposed with section loss up to 30% in a 6’ width of slab or in a beam cross section, up to 50% of the compression surface area spalled or delaminated, channel beams spalled or delaminated up to 30% section loss of the beam concrete cross section around the bottom primary reinforcement steel but not within 4’ of beam ends.</td>
</tr>
<tr>
<td>3</td>
<td>SERIOUS. Primary reinforcing steel exposed with section loss up to 50% on a 6’ width for slabs or cross section for beams, up to 100% section loss of compression surface area in a 6’ width of slab or beam cross section, up to 50% section loss of the concrete cross section of a beam, channel beams spalled or delaminated around the bottom primary reinforcement steel within 4’ of beam ends.</td>
</tr>
<tr>
<td>2</td>
<td>CRITICAL. Similar to the description for a condition rating of “3” although more extensive with over 50% loss of reinforcing steel, channel beams fully delaminated or spalled at ends with broken stirrups, requires special feature inspections, temporary support or repairs may be required to remain open to traffic. The Bureau of Bridges and Structures shall be notified immediately.</td>
</tr>
</tbody>
</table>

New Superstructure
- Slab
- No Defects

New superstructure – Allowed first inspection only
Item 59 – Concrete Superstructure

New Superstructure

- Channel Beam
- No Defects

New superstructure – Allowed first inspection only

Very Good Condition

- Slab
- No significant defects

VERY GOOD. No significant defects, very minor shrinkage cracks, surface scaling, spalling or pop-outs which do not expose reinforcing steel.
Item 59 – Concrete Superstructure

Very Good Condition

- Channel Beam
- Minor shrinkage cracks in legs

VERY GOOD. No significant defects, very minor shrinkage cracks, surface scaling, spalling or pop-outs which do not expose reinforcing steel.

Item 59 – Concrete Superstructure

Very Good Condition

- 3-Sided Precast
- No significant defects

VERY GOOD. No significant defects, very minor shrinkage cracks, surface scaling, spalling or pop-outs which do not expose reinforcing steel.
Item 59 – Concrete Superstructure

Good Condition

- Slab
- Minor non-structural cracks less than 0.03” present

GOOD. Isolated non-structural cracks up to 0.03”, minor pop-outs or spalls without exposed primary reinforcing steel, stirrups may be exposed in a few locations.

Item 59 – Concrete Superstructure

Good Condition

- Through Girder
- Minor spalling without exposed reinforcement

GOOD. Isolated non-structural cracks up to 0.03”, minor pop-outs or spalls without exposed primary reinforcing steel, stirrups may be exposed in a few locations.
Item 59 – Concrete Superstructure

Good Condition

- 3-Sided Precast
- Non-structural cracks less than 0.03” present

GOOD. Isolated non-structural cracks up to 0.03”, minor pop-outs or spalls without exposed primary reinforcing steel, stirrups may be exposed in a few locations.

Satisfactory Condition

- Slab
- Non-structural cracks less than 0.06” present
- 7% of surface area is delaminated with leaching present over a 6’ wide section

SATISFACTORY. Extensive non-structural cracks up to 0.06”, isolated hairline structural cracks, spalls and delaminations may be present on up to 10% of a beams cross section or 6’ width of a slab with exposed primary reinforcement with surface rust only, up to 20% of a beam cross section or 6’ width of a slab may be map cracked, spalled and delaminated. Spalls and delaminations up to 5% on the sides of a beam cross section.
Item 59 – Concrete Superstructure

Satisfactory Condition

- T-Beam
- Non-structural cracks less than 0.06” present
- 9% of a beam surface area has spalls, delaminations, and leaching present

SATISFACTORY. Extensive non-structural cracks up to 0.06”, isolated hairline structural cracks, spalls and delaminations may be present on up to 10% of a beam’s cross section or 6’ width of a slab with exposed primary reinforcement with surface rust only, up to 20% of a beam cross section or 6’ width of a slab may be map cracked, spalled and delaminated. Spalls and delaminations up to 5% on the sides of a beam cross section.

Item 59 – Concrete Superstructure

Satisfactory Condition

- Channel Beam
- Non-structural cracks less than 0.06” present
- 5% of a beam surface area has delaminations and map cracking
- Be sure cracks are due to delaminations!

SATISFACTORY. Extensive non-structural cracks up to 0.06”, isolated hairline structural cracks, spalls and delaminations may be present on up to 10% of a beam’s cross section or 6’ width of a slab with exposed primary reinforcement with surface rust only, up to 20% of a beam cross section or 6’ width of a slab may be map cracked, spalled and delaminated. Spalls and delaminations up to 5% on the sides of a beam cross section.
Item 59 – Concrete Superstructure

Satisfactory Condition

- 3-Sided Precast
- Tight non-structural cracks less than 0.06” present
- Leaching keyway

Satisfactory Condition

Extensive non-structural cracks up to 0.06”, isolated hairline structural cracks, spalls and delaminations may be present on up to 10% of a beam's cross section or 6' width of a slab with exposed primary reinforcement with surface rust only, up to 20% of a beam cross section or 6' width of a slab may be map cracked, spalled and delaminated. Spalls and delaminations up to 5% on the sides of a beam cross section.

Item 59 – Concrete Superstructure

Fair Condition

- Slab
- 8% spalls and delaminations present
- Less than 10% section loss in reinforcement over 6' width

Fair Condition

Non-structural cracks greater than 0.06”, structural cracks up to 0.03”, spalling with section loss of reinforcing steel up to 10% in a beam or 6' width of slab, up to 10% of compression surface area spalled or delaminated in a beam cross section or 6' width of slab. Up to 10% section loss of the concrete cross section.
Item 59 – Concrete Superstructure

Fair Condition

- T-Beam
- Spalling and delaminations present
- 10% section loss in beam primary reinforcement

5

FAIR. Non-structural cracks greater than 0.06”, structural cracks up to 0.03”, spalling with section loss of reinforcing steel up to 10% in a beam or 6’ width of slab, up to 10% of compression surface area spalled or delaminated in a beam cross section or 6’ width of slab. Up to 10% section loss of the concrete cross section.

Item 59 – Concrete Superstructure

Fair Condition

- Through Girder
- Isolated structural cracks less than 0.03” wide
- Spalling with 6% section loss in beam primary reinforcement

5

FAIR. Non-structural cracks greater than 0.06”, structural cracks up to 0.03”, spalling with section loss of reinforcing steel up to 10% in a beam or 6’ width of slab, up to 10% of compression surface area spalled or delaminated in a beam cross section or 6’ width of slab. Up to 10% section loss of the concrete cross section.
Item 59 – Concrete Superstructure

Fair Condition

- Channel Beam
- Map cracking, delaminations, and leaching present on 10% of beam surface
- No significant section loss in exposed steel

FAIR. Non-structural cracks greater than 0.06", structural cracks up to 0.03", spalling with section loss of reinforcing steel up to 10% in a beam or 6' width of slab, up to 10% of compression surface area spalled or delaminated in a beam cross section or 6' width of slab. Up to 10% section loss of the concrete cross section.

Item 59 – Concrete Superstructure

Fair Condition

- 3-Sided Precast
- 8% of surface area is spalled or delaminated
- 6% section loss in reinforcement

FAIR. Non-structural cracks greater than 0.06", structural cracks up to 0.03", spalling with section loss of reinforcing steel up to 10% in a beam or 6' width of slab, up to 10% of compression surface area spalled or delaminated in a beam cross section or 6' width of slab. Up to 10% section loss of the concrete cross section.
Item 59 – Concrete Superstructure

Poor Condition

- Slab
- Spalling with exposed reinforcement present
- 15% section loss in primary reinforcement over a 6’ width

POOR. Flexural or shear cracks up to 0.06”, primary reinforcing steel exposed with section loss up to 30% in a 6’ width of slab or in a beam cross section, up to 50% of the compression surface area spalled or delaminated, channel beams spalled or delaminated up to 30% section loss of the beam concrete cross section around the bottom primary reinforcement steel but not within 4’ of beam ends.

Item 59 – Concrete Superstructure

Poor Condition

- T-Beam
- Structural cracks near beam ends less than 0.06” in width
- Delaminations and widespread leaching present
- 25% section loss in beam primary reinf.

POOR. Flexural or shear cracks up to 0.06”, primary reinforcing steel exposed with section loss up to 30% in a 6’ width of slab or in a beam cross section, up to 50% of the compression surface area spalled or delaminated, channel beams spalled or delaminated up to 30% section loss of the beam concrete cross section around the bottom primary reinforcement steel but not within 4’ of beam ends.
Item 59 – Concrete Superstructure

Poor Condition
- Through Girder
- Spalled concrete with exposed reinforcement
- 20% section loss in exposed primary reinforcement

Serious Condition
- Slab
- Concrete spalling with reinforcement exposed
- 35% section loss in exposed primary reinforcement
- Concrete cores may be needed

Item 59 – Concrete Superstructure

Poor Condition
POOR. Flexural or shear cracks up to 0.06”, primary reinforcing steel exposed with section loss up to 30% in a 6’ width of slab or in a beam cross section, up to 50% of the compression surface area spalled or delaminated, channel beams spalled or delaminated up to 30% section loss of the beam concrete cross section around the bottom primary reinforcement steel but not within 4’ of beam ends.

Serious Condition
SERIOUS. Primary reinforcing steel exposed with section loss up to 50% on a 6’ width for slabs or cross section for beams, up to 100% section loss of compression surface area in a 6’ width of slab or beam cross section, up to 50% section loss of the concrete cross section of a beam, channel beams spalled or delaminated around the bottom primary reinforcement steel within 4’ of beam ends.
Item 59 – Concrete Superstructure

Serious Condition

- T-Beam
- Concrete spalling with reinforcement exposed
- 40% section loss in exposed primary reinforcement

SERIOUS. Primary reinforcing steel exposed with section loss up to 50% on a 6’ width for slabs or cross section for beams, up to 100% section loss of compression surface area in a 6’ width of slab or beam cross section, up to 50% section loss of the concrete cross section of a beam, channel beams spalled or delaminated around the bottom primary reinforcement steel within 4’ of beam ends.

Item 59 – Concrete Superstructure

Serious Condition

- Through Girder
- Concrete spalling with reinforcement exposed
- 35% section loss in exposed primary reinforcement

SERIOUS. Primary reinforcing steel exposed with section loss up to 50% on a 6’ width for slabs or cross section for beams, up to 100% section loss of compression surface area in a 6’ width of slab or beam cross section, up to 50% section loss of the concrete cross section of a beam, channel beams spalled or delaminated around the bottom primary reinforcement steel within 4’ of beam ends.
Item 59 – Concrete Superstructure

Serious Condition
- Channel Beam
- Concrete spalling with reinforcement exposed
- 35% section loss in exposed primary reinforcement

SERIOUS. Primary reinforcing steel exposed with **section loss** up to 50% on a 6' width for slabs or cross section for beams, up to 100% section loss of compression surface area in a 6' width of slab or beam cross section, up to 50% section loss of the concrete cross section of a beam, channel beams spalled or delaminated around the bottom primary reinforcement steel within 4' of beam ends.

Critical Condition
- Channel Beam
- Concrete spalling with reinforcement exposed
- 40% section loss in primary reinforcement
- Broken stirrups at beam ends
- Bureau of Bridges and Structures should be notified immediately!

CRITICAL. Similar to the description for a condition rating of “3” although more extensive with over 50% **loss of reinforcing steel**, channel beams fully delaminated or spalled at ends with broken stirrups, requires special feature inspections, temporary support or repairs may be required to remain open to traffic. The Bureau of Bridges and Structures shall be notified immediately.
Item 59 – Concrete Superstructure

Critical Condition

- Slab
- Large spall with two layers of exposed reinforcement
- 50% section loss in bottom reinforcement
- Full-depth hole through slab above reinforcement
- Middle third of soffit is delaminated and sagging

CRITICAL, Similar to the description for a condition rating of “3” although more extensive with over 50% loss of reinforcing steel, channel beams fully delaminated or spalled at ends with broken stirrups, requires special feature inspections, temporary support or repairs may be required to remain open to traffic. The Bureau of Bridges and Structures shall be notified immediately.

Discussion
Item 71 – Waterway Adequacy

- Appraises the waterway opening with respect to passage of flow through the bridge
- Site conditions may warrant higher or lower ratings than indicated by the hydraulic table
- Requires knowledge of the history of high water elevations at the site
Key Words

Descriptions for Chance of Overtopping:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote</td>
<td>Greater than 100 years</td>
</tr>
<tr>
<td>Slight</td>
<td>11 to 100 years</td>
</tr>
<tr>
<td>Occasional</td>
<td>3 to 10 years</td>
</tr>
<tr>
<td>Frequent</td>
<td>Less than 3 years</td>
</tr>
</tbody>
</table>

Adjectives Describing Traffic Delays:

<table>
<thead>
<tr>
<th>Adjective</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insignificant</td>
<td>Minor inconvenience. Highway passable in a matter of hours.</td>
</tr>
<tr>
<td>Significant</td>
<td>Traffic delays of up to several days.</td>
</tr>
<tr>
<td>Severe</td>
<td>Long term delays to traffic with resulting hardship.</td>
</tr>
</tbody>
</table>

Item 71 – Waterway Adequacy

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Description details</th>
</tr>
</thead>
<tbody>
<tr>
<td>N N N</td>
<td>Bridge not over a waterway.</td>
</tr>
<tr>
<td>9 9 9</td>
<td>Bridge deck and roadway approaches above flood water elevations (high water). Chance of overtopping is remote.</td>
</tr>
<tr>
<td>8 8 8</td>
<td>Bridge deck above roadway approaches. Slight chance of overtopping roadway approaches.</td>
</tr>
<tr>
<td>6 6 7</td>
<td>Slight chance of overtopping bridge deck and roadway approaches.</td>
</tr>
<tr>
<td>4 5 6</td>
<td>Bridge deck above roadway approaches. Occasional overtopping of roadway approaches with insignificant traffic delays.</td>
</tr>
<tr>
<td>3 4 5</td>
<td>Bridge deck above roadway approaches. Occasional overtopping of roadway approaches with significant traffic delays.</td>
</tr>
<tr>
<td>2 3 4</td>
<td>Occasional overtopping of bridge deck and roadway approaches with significant traffic delays.</td>
</tr>
<tr>
<td>2 2 3</td>
<td>Frequent overtopping of bridge deck and roadway approaches with significant traffic delays.</td>
</tr>
<tr>
<td>2 2 2</td>
<td>Occasional or frequent overtopping of bridge deck and roadway approaches with severe traffic delays.</td>
</tr>
<tr>
<td>0 0 0</td>
<td>Bridge closed.</td>
</tr>
</tbody>
</table>
Item 71 – Waterway Adequacy

Interstate	**Other Principal and Minor Arterials and Major Collectors**	**Minor Collectors, Local**	**Description**
N | N | N | Bridge not over a waterway.

Description:

Bridge deck and roadway approaches above flood water elevations (high water). Chance of overtopping is remote.
Item 71 – Waterway Adequacy

<table>
<thead>
<tr>
<th>Interstate</th>
<th>Other Principal and Minor Arterials and Major Collectors</th>
<th>Minor Collectors, Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Bridge deck above roadway approaches. Slight chance of overtopping roadway approaches.</td>
</tr>
</tbody>
</table>

Item 71 – Waterway Adequacy

<table>
<thead>
<tr>
<th>Interstate</th>
<th>Other Principal and Minor Arterials and Major Collectors</th>
<th>Minor Collectors, Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>Slight chance of overtopping bridge deck and roadway approaches.</td>
</tr>
</tbody>
</table>
Item 71 – Waterway Adequacy

<table>
<thead>
<tr>
<th>Interstate</th>
<th>Other Principal and Minor Arterials and Major Collectors</th>
<th>Minor Collectors, Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Bridge deck above roadway approaches. Occasional overtopping of roadway approaches with insignificant traffic delays.</td>
</tr>
</tbody>
</table>

Item 71 – Waterway Adequacy

<table>
<thead>
<tr>
<th>Interstate</th>
<th>Other Principal and Minor Arterials and Major Collectors</th>
<th>Minor Collectors, Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>Bridge deck above roadway approaches. Occasional overtopping of roadway approaches with significant traffic delays.</td>
</tr>
</tbody>
</table>
Item 71 – Waterway Adequacy

<table>
<thead>
<tr>
<th>Interstate</th>
<th>Other Principal and Minor Arterials and Major Collectors</th>
<th>Minor Collectors, Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Occasional overtopping of bridge deck and roadway approaches with significant traffic delays.*</td>
</tr>
</tbody>
</table>

* Frequent overtopping of bridge deck and roadway approaches with significant traffic delays. *
Item 71 – Waterway Adequacy

<table>
<thead>
<tr>
<th>Interstate</th>
<th>Other Principal and Minor Arterials and Major Collectors</th>
<th>Minor Collectors, Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>Occasional or frequent overtopping of bridge deck and roadway approaches with severe traffic delays.</td>
</tr>
</tbody>
</table>

Discussion
SUBSTRUCTURES

Item 60 – Substructure Condition

Typical Elements

• Abutments
• Piers
• Piles
• Footings
• Fenders
Item 60 – Substructure Condition

• **Integral Abutment**
 Substructure is the portion of the bridge below the intersection of the bottom of the superstructure with the vertical wall face

• **Non-Integral Abutment**
 - Substructure is the portion below the bearings
 - Includes backwalls

Item 60 – Substructure Condition

Temporary Shoring

- If left in place for 5 yrs. or more, temporary supports are considered the Substructure
- The rating coded for Item 60 would be based on the criteria for the material used for the former “temporary” support
- Steel shoring, similar to the example in the lower photo, becomes a Fracture Critical Member in the Substructure
Item 60 – Substructure Condition

Pile Deterioration Problems

- Exposed piling without concrete encasement:
 - Steel Piling
 - H-Pile
 - Metal Shell
 - Timber Piling
- Accelerated deterioration possible:
 - At the top where it meets the cap
 - At or just below the mud-line, in areas with frequent wetting and drying occurring

Item 60 – Substructure Condition

IL County Bridge Failure

- Pier collapsed on 4 span bridge in September 2013
- Collapse immediately preceded by a < legal loads truck crossing bridge
- Failure of deteriorated piling was the cause
IL County Failure

- Exposed steel H-Piles
- Accelerated deterioration and section loss occurred
 - At the water line
 - In areas with frequent wetting and drying
- Difficult location to easily see during inspection

Steel H-piling

- Heavy section loss
- Failed pile sections
Item 60 – Substructure Condition

Pile Deterioration Problems

- Damaged Timber Piling
- Heavy deterioration found just below the mud-line

2016 State Rte. Bridge closure in Ohio due to deteriorated exposed steel piles at the water line. SUBSTRUCTURE Rating was a “7”.

Missouri DOT has reported seeing similar problems.

2016 Local Rte. Bridge closure in Illinois due to deteriorated exposed steel piles just below the pier cap.
Item 60 – Substructure Condition

Exposed Pile Inspection:
Extra attention required during inspection!!

- Check condition of piles at / below water / mud-line (12”-18”)
- Return later to inspect during a low water period if necessary
- **Timber Piles**
 - Sound piles with hammer full height
 - Core piles if hollow to determine section loss %
- **Steel Piles**
 - Also check top of pile at bottom of cap
 - Take thickness readings if necessary to determine section loss %
- See IDOT CL 2014-15 on Exposed Bridge Piling

Item 60 – Substructure Condition

Underwater Inspection:
For substructures requiring underwater inspection that are not being completed by a diver:

- Verify stream cross section elevations
- Plot and compare new to previous cross section elevations
- Probe around footings to verify if they have been exposed
- Look for deterioration of the underwater portion of the substructure
Item 60 – Substructure Condition

Key Indicators

- Cracks
- Scaling
- Spalling
- Delaminations
- Section Loss
- Scour
- Movement

Code Description (CONCRETE OR MASONRY)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Culvert.</td>
</tr>
<tr>
<td>9</td>
<td>New substructure.</td>
</tr>
<tr>
<td>8</td>
<td>VERY GOOD. No significant defects. Shrinkage cracks, very light surface scaling, spalling or pop-outs which do not expose reinforcing steel. Insignificant damage caused by drift or collision with no misalignment and no corrective action warranted.</td>
</tr>
<tr>
<td>7</td>
<td>GOOD. Minor cracking, spalls or scaling with few incidences of exposed reinforcement with only surface rust. Minor scour may have occurred at the foundation.</td>
</tr>
<tr>
<td>6</td>
<td>SATISFACTORY. Moderate deterioration or disintegration, spalls, cracking and leaching on concrete or masonry units with up to 2% section loss or loss of bearing area. Shallow, local scour may have occurred near foundations with exposure of top of pile supported footings, less than 2' deep scour around pile bents. No exposed piles.</td>
</tr>
</tbody>
</table>

Code Description

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>FAIR. Large portions of concrete or masonry units are spalled, scaled, or delaminated with exposed reinforcing steel up to 10% loss of concrete (horizontal cross section), up to 10% loss of reinforcement steel, extensive map cracking with leaching, spread footings with no undermining on soil and up to 5% undermining on rock, less than 2’ of exposed piles or seal coat below pile supported footings, less than 6’ deep scour around pile bents, up to 10% section loss of bearing seats or piles.</td>
</tr>
<tr>
<td>4</td>
<td>POOR. Active cracks in concrete and masonry units that indicate a reduction in the substructure unit’s capacity to support the superstructure loads, up to 30% section loss of bearing seat(s) or pile(s), section loss of primary steel reinforcement up to 30%. Section loss of concrete up to 30%, undermining of spread footing which may be affecting the stability of the unit but no significant settlement has yet occurred, worst condition or combination of deterioration stated in condition rating “5”. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.</td>
</tr>
</tbody>
</table>
Item 60 – Substructure Condition

Key Indicators
- Cracks
- Scaling
- Spalling
- Delaminations
- Section Loss
- Scour
- Movement

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SERIOUS. Section losses up to 50%, loss of bearing seat area to cause more than 2” drop, adjacent column ties are broken causing the vertical reinforcement to be ineffective, severe scour or undermining of footings affecting the stability of the unit with some settlement of the substructure. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.</td>
</tr>
<tr>
<td>2</td>
<td>CRITICAL. Conditions worse than condition rating of “3”, section loss greater than 50%, special feature inspection is required to allow bridge to remain open, measurable lateral or vertical movement, unstable structures. The Bureau of Bridges and Structures shall be notified immediately. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.</td>
</tr>
</tbody>
</table>

New Construction

Note Integral Abutment

Allowed 1st inspection only.
Item 60 – Substructure Condition

New Construction

Allowed 1st inspection only.

Item 60 – Substructure Condition

Very Good Condition

Light surface scaling

VERY GOOD. No significant defects. Shrinkage cracks, very light surface scaling, spalling or pop-outs which do not expose reinforcing steel. Insignificant damage caused by drift or collision with no misalignment and no corrective action warranted.
Item 60 – Substructure Condition

Very Good Condition

Light surface scaling

VERY GOOD. No significant defects. Shrinkage cracks, very light surface scaling, spalling or pop-outs which do not expose reinforcing steel. Insignificant damage caused by drift or collision with no misalignment and no corrective action warranted.

No noted defects

VERY GOOD. No significant defects. Shrinkage cracks, very light surface scaling, spalling or pop-outs which do not expose reinforcing steel. Insignificant damage caused by drift or collision with no misalignment and no corrective action warranted.
Item 60 – Substructure Condition

Good Condition

Minor cracking and scaling of the underside of the pier cap

GOOD. Minor cracking, spalls or scaling with few incidences of exposed reinforcement with only surface rust. Minor scour may have occurred at the foundation.
Item 60 – Substructure Condition

Good Condition
- Minor cracking and scaling on piers
- Minor scour
- Very minor surface rust on FCM cap beam
- Steel sheet piling in good condition

GOOD. Minor cracking, spalls or scaling with few incidences of exposed reinforcement with only surface rust. Minor scour may have occurred at the foundation. GOOD (Steel). Some light surface rust, minor scour may have occurred.

Satisfactory Condition
- Hairline vertical cracks in the pier bents with minor spalls

SATISFACTORY. Moderate deterioration or disintegration, spalls, cracking and leaching on concrete or masonry units with up to 2% section loss or loss of bearing area. Shallow, local scour may have occurred near foundations with exposure of top of pile supported footings, less than 2’ deep scour around pile bents. No exposed piles.
Item 60 – Substructure Condition

Satisfactory Condition

- Minor spall on the corner of one bent with exposed reinforcement
- Minor spalls on concrete cap with no reinforcement exposed

Satisfactory Condition

The concrete backwall has leaching cracks throughout

SATISFACTORY. Moderate deterioration or disintegration, spalls, cracking and leaching on concrete or masonry units with up to 2% section loss or loss of bearing area. Shallow, local scour may have occurred near foundations with exposure of top of pile supported footings, less than 2' deep scour around pile bents. No exposed piles.
Item 60 – Substructure Condition

Satisfactory Condition

- Defects include surface decay with cracking and splitting of timber piles
- Sound piles to check for hollow sections

Satisfactory. Surface decay, cracking, splitting of timber, fire damage limited to surface scorching of timber with up to 2% section loss, shallow, local scour may have occurred near foundations. No exposed piles.

Fair Condition

- Large areas of concrete cap are spalled with exposed reinforcement
- Section loss is 7% of total primary reinforcement at section

Fair. Large portions of concrete or masonry units are spalled, scaled, or delaminated with exposed reinforcing steel up to 10% loss of concrete (horizontal cross section), up to 10% loss of reinforcement steel, extensive map cracking with leaching, spread footings with no undermining on soil and up to 5% undermining on rock, less than 2’ of exposed piles or seal coat below pile supported footings, less than 6’ deep scour around pile bents, up to 10% section loss of bearing seats or piles.
Item 60 – Substructure Condition

Fair Condition

- Large areas of cap are spalled with exposed reinforcement
- Section loss is 10% of total primary reinforcement in section

Item 60 – Substructure Condition

Fair Condition

- Large areas of spalled and delaminated concrete on face of abutment
- Minor vertical cracks throughout

Item 60 – Substructure Condition

Fair Condition

- Large portions of concrete or masonry units are spalled, scaled, or delaminated with exposed reinforcing steel up to 10% loss of concrete (horizontal cross section), up to 10% loss of reinforcement steel, extensive map cracking with leaching, spread footings with no undermining on soil and up to 5% undermining on rock, less than 2’ of exposed piles or seal coat below pile supported footings, less than 6’ deep scour around pile bents, up to 10% section loss of bearing seats or piles.
Item 60 – Substructure Condition

Fair Condition
- Large areas of cap are spalled with exposed reinforcement
- Section loss is 9% of total primary reinforcement in section
- Map cracking with efflorescence noted in a few locations

FAIR. Large portions of concrete or masonry units are spalled, scaled, or delaminated with exposed reinforcing steel up to 10% loss of concrete (horizontal cross section), up to 10% loss of reinforcement steel, extensive map cracking with weathering, spread footings with no undermining on soil and up to 5% undermining on rock, less than 2’ of exposed piles or seal coat below pile supported footings, less than 6’ deep scour around pile bents, up to 10% section loss of bearing seats or piles.

Poor Condition
- Active cracks and spalls noted
- 22% loss in concrete cross section

POOR. Active cracks in concrete and masonry units that indicate a reduction in the substructure unit’s capacity to support the superstructure loads, up to 30% section loss of bearing seat(s) or pile(s), section loss of primary steel reinforcement up to 30%. Section loss of concrete up to 30%, undermining of spread footing which may be affecting the stability of the unit but no significant settlement has yet occurred, worst condition or combination of deterioration stated in condition rating “5”. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.
Item 60 – Substructure Condition

Poor Condition

- Large area of spalled concrete under exterior beam
- Integrity of bearing seat reduced due to spalls

POOR. Active cracks in concrete and masonry units that indicate a reduction in the substructure unit’s capacity to support the superstructure loads, up to 30% section loss of bearing seat(s) or pile(s), section loss of primary steel reinforcement up to 30%. *Section loss* of concrete up to 30%, undermining of spread footing which may be affecting the stability of the unit but no significant settlement has yet occurred, worst condition or combination of deterioration stated in condition rating “5”. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.

9/13/2021
Item 60 – Substructure Condition

Serious Condition
- Abutment undermined by scour
- Abutment stability affected

SERIOUS. Section losses up to 50%, loss of bearing seat area to cause more than 2” drop, adjacent column ties are broken causing the vertical reinforcement to be ineffective, severe scour or undermining of footings affecting the stability of the unit with some settlement of the substructure. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.

Item 60 – Substructure Condition

Critical Condition
- Abutment undermined by scour
- Abutment corner has settled approximately 6”

CRITICAL. Conditions worse than condition rating of “3”, section loss greater than 50%. Special feature inspection is required to allow bridge to remain open, measurable lateral or vertical movement, unstable structures. The Bureau of Bridges and Structures shall be notified immediately. If the rating of this item is due to scour, the rating for Item 113 shall be re-evaluated.
Item 60 – Substructure Condition

Critical Condition
- Concrete section loss of 55% in pier column
- Special Inspection required

Failure Imminent
- Notify the Bureau of Bridges and Structures immediately

Substructure in “imminent failure” condition requiring bridge closure or temporary measures to allow structure to remain open.
Item 60 – Substructure Condition

Failure Imminent

- Tops of steel piles are cracked
- Abutment cap has displaced laterally causing instability
- Notify the Bureau of Bridges and Structures immediately

Substructure in “imminent failure” condition requiring bridge closure or temporary measures to allow structure to remain open.

9/13/2021

39

Item 60 – Substructure Condition

Failure Imminent

- 3 exposed piles have 100% section loss
- The 2 remaining piles are obscured by debris and may have similar loss of section
- Notify the Bureau of Bridges and Structures immediately

Substructure in “imminent failure” condition requiring bridge closure or temporary measures to allow structure to remain open.

9/13/2021

40
SCOUR & CHANNEL CONDITIONS

Scour Review

DEFINITIONS

- **Scour**: The removal of material from the streambed or embankment as a result of the erosive action of stream flow.

- **Scour Critical**: A bridge with a foundation element that has been determined to be unstable for the observed or evaluated scour condition.
Scour Review

TYPES OF SCOUR

- General Scour
- Contraction Scour
- Local Scour
- Lateral Stream Migration

General Scour/Degradation

- This is the gradual lowering of a streambed along a considerable length of waterway
- Occurs even if bridge crossing is not there
- Can be accelerated by:
 - Natural cutoffs in a meandering stream
 - Straightening or narrowing the channel
 - Dredging
Scour Review

General Scour/Degradation

- This is the lowering of the streambed under the bridge only, resulting from accelerated stream flow due to reduced waterway opening
- Occurs when the bridge waterway opening is restrictive
- Can be caused by:
 - Embankments
 - Debris or Vegetation
 - Substructure units
 - Ice

Scour Review

Contraction Scour

- This is the lowering of the streambed under the bridge only, resulting from accelerated stream flow due to reduced waterway opening
- Occurs when the bridge waterway opening is restrictive
- Can be caused by:
 - Embankments
 - Debris or Vegetation
 - Substructure units
 - Ice
Scour Review

Contraction Scour

Local Scour

- This is the lowering of the streambed adjacent to an obstruction in the waterway.
- Often much greater than general scour (up to 10 times)
- Often caused by:
 - Abutments
 - Wide, long, unusually shaped or poorly skewed piers
 - Streamflow depth (as depth increases vortex action is magnified)
 - Debris or ice accumulation
Scour Review

Local Scour
(images from USGS)

Lateral Stream Migration

- This is the relocation of the channel over time due to lateral scour of the embankment.

- Lateral stream migration process:
 - Bank damage
 - Sloughing bank
 - Undermined bank
 - Channel misalignment
Scour Review

Lateral Stream Migration

Types Of Scour
Scour Review

Scour Plans of Action

- Plans of Action (POA’s) should be complete for all scour-critical bridges.
- Plan of Action must be kept up-to-date to reflect changes in condition, personnel, and contact information.
- Documentation should be maintained in the bridge file for site visits made during activation of POA.

Scour Review

Reporting Requirements for New Scour at Bridges

- **Scour Critical Bridge (ISIS Item-113 ≤ 3)**
 - Scour ≥ 25% as-built overburden on footing has occurred
 - Exposed top of footing or > 6’ of scour at a pile bent sub unit
- **Scour Susceptible Bridge (ISIS Item-113 = 4, 6 or 7)**
 - Scour ≥ 50% as-built overburden on footing has occurred
 - Exposed top of footing or > 6’ of scour at a pile bent sub unit
 - The scour countermeasure has been damaged by scour
- **Other Bridges (ISIS Item-113 = 5, 8 or 9)**
 - Same as “Scour Susceptible Bridge”
- **Notify the responsible Program Manager and IDOT Bridge Management & Inspection Unit as soon as possible in these cases. Change ISIS Item-113 to “A” (new code indicating re-evaluation necessary).**
Bridge Scour Monitoring System

- The NBIS require owners to monitor structures with known or potential scour deficiencies.
- IDOT has contracted to use BRIDGE WATCH® to assist with these efforts on the state & local system. (CL 2012-18)
 - Web based system
 - Monitors rainfall in drainage areas associated with bridges
 - Predicts when rainfall has created a predetermined storm event
- Structures with a scour rating of 1 - 8 are monitored.
- IDOT is considering making training available annually for users in the future.

Scour Review

Bridge Scour Monitoring System (BRIDGE WATCH®)

- This monitoring service assists in implementing Scour POA.
- Agencies with structures meeting this criteria have been contacted by IDOT.
- Warnings & Alerts are sent via text / email / fax.

<table>
<thead>
<tr>
<th>Scour Rating</th>
<th>Storm Event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 yr.</td>
</tr>
<tr>
<td>4 or Less</td>
<td>Warning</td>
</tr>
<tr>
<td>5</td>
<td>Warning</td>
</tr>
<tr>
<td>6</td>
<td>Warning</td>
</tr>
<tr>
<td>7 or 8</td>
<td></td>
</tr>
</tbody>
</table>
Item 61 – Channel Conditions

- **CHANNEL CONDITIONS** - Describes the physical conditions associated with the flow of water through the bridge
 - Stream stability
 - Condition of the channel
 - Condition of riprap, slope protection, and stream control devices including spur dikes

- **Inspectors should be particularly concerned with visible signs of excessive water velocity**
 - Undermining of slope protection or footings
 - Erosion of banks
 - Realignment of the stream

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NOT APPLICABLE. Use when bridge is not over a waterway.</td>
</tr>
<tr>
<td>9</td>
<td>EXCELLENT. There are no noteworthy deficiencies that affect the condition of the channel.</td>
</tr>
<tr>
<td>8</td>
<td>VERY GOOD. Banks are protected or well vegetated. River control devices such as spur dikes and embankment protection are not required or are in a stable condition.</td>
</tr>
<tr>
<td>7</td>
<td>GOOD. Bank protection is in need of minor repairs. River control devices and embankment protection have a little minor damage. Banks and/or channel may have minor amounts of drift not affecting the waterway opening.</td>
</tr>
<tr>
<td>6</td>
<td>SATISFACTORY. Bank is beginning to slump. River control devices and embankment protection have widespread minor damage. There is minor streambed movement evident. Debris is restricting the waterway slightly.</td>
</tr>
<tr>
<td>5</td>
<td>FAIR. Bank protection is being eroded. River control devices and/or embankment have major damage. Trees and brush restrict the channel.</td>
</tr>
<tr>
<td>4</td>
<td>POOR. Bank and embankment protection is severely undermined. River control devices have severe damage. Deposits of debris in the waterways are severely restricting the opening.</td>
</tr>
<tr>
<td>3</td>
<td>SERIOUS. Bank protection has failed. River control devices have been destroyed. Streambed aggradation, degradation or lateral movement has changed the waterway to now threaten the bridge and/or approach roadway.</td>
</tr>
<tr>
<td>2</td>
<td>CRITICAL. The waterway has changed to the extent the bridge is near a state of collapse.</td>
</tr>
<tr>
<td>1</td>
<td>IMMINENT FAILURE. Bridge closed. Corrective action may return bridge to light service.</td>
</tr>
<tr>
<td>0</td>
<td>FAILED. Bridge closed. Replacement necessary.</td>
</tr>
</tbody>
</table>
Item 61 – Channel Conditions

Excellent Condition

- The Channel is well aligned
- Banks are vegetated

EXCELLENT. There are no noteworthy deficiencies that affect the condition of the channel.

Very Good Condition

- The Channel is well aligned
- Banks are vegetated

VERY GOOD. Banks are protected or well vegetated. River control devices such as spur dikes and embankment protection are not required or are in a stable condition.
Item 61 – Channel Conditions

Good Condition
- The Channel is well aligned
- Banks are in need of minor repair with removal of fallen trees
- Drift not affecting waterway opening

GOOD. Bank protection is in need of minor repairs. River control devices and embankment protection have a little minor damage. Banks and/or channel may have minor amounts of drift not affecting the waterway opening.

Satisfactory Condition
- Minor streambed movement evident
- Banks are beginning to slump

SATISFACTORY. Bank is beginning to slump. River control devices and embankment protection have widespread minor damage. There is minor streambed movement evident. Debris is restricting the waterway slightly.
Item 61 – Channel Conditions

Fair Condition

- Bank protection is being eroded
- Fallen trees are restricting the channel

FAIR. Bank protection is being eroded. River control devices and/or embankment have major damage. Trees and brush restrict the channel.

Item 61 – Channel Conditions

- Debris is restricting waterway slightly.
- Trees and brush restrict channel.

5

6
Item 61 – Channel Conditions

Poor Condition

Debris is severely restricting the waterway.

POOR. Bank and embankment protection is severely undermined. River control devices have severe damage. Deposits of debris in the waterways are severely restricting the opening.

Bank protection is being eroded. Debris is severely restricting the waterway.
Item 61 – Channel Conditions

Serious Condition
- Channel has shifted toward road
- Bank protection has failed
- Road and abutment threatened by erosion

SERIOUS. Bank protection has failed. River control devices have been destroyed. Streambed aggradation, degradation or lateral movement has changed the waterway to now threaten the bridge and/or approach roadway.

Critical Condition
- Photo 1 of 2
- Banks are severely eroded
- Fallen trees are blocking channel

CRITICAL. The waterway has changed to the extent the bridge is near a state of collapse.
Item 61 – Channel Conditions

Critical Condition

- Photo 2 of 2
- Bank erosion and debris in stream have redirected stream flow towards abutment
- Scour is undermining abutment and exposing caissons

CRITICAL. The waterway has changed to the extent the bridge is near a state of collapse.

Discussion