Community Advisory Group (CAG)
Meeting #3
November 20, 2013
Introductions

• Project Study Group (PSG)
 – Illinois Department of Transportation
 – Piasa Collaborative JV Team
 • AMEC Environment & Infrastructure, Inc.
 • Bernardin, Lochmueller & Associates, Inc.
 • Horner and Shifrin

• CAG members
 – Please refer to roster in your binder
Tonight’s Meeting Agenda

• Revisit the Problem Statement
• Revisit Roadway Function, Crash and Traffic Data
• Introduce the Corridor Development Process
• Introduce the Process for Determining Environmental Impacts
• Introduce Preliminary Corridors
Project Binder – New Material

- Tonight’s PowerPoint Presentation
- Updated CAG Roster
- Updated Study Area Map
- CAG Meetings #1 and #2 Summaries
- Copy of the Purpose and Need statement
- Context Audit Summary
- Updated Stakeholder Involvement Plan
Review of the Problem Statement
Problem Statement

“The transportation problems in the study area relate to traffic congestion, poor or mismanaged access and insufficient roadway continuity and connectivity, which contributes to delays and crashes. Traffic is often delayed by trains at the numerous at-grade rail crossings. These improvements need to consider the community’s desire to preserve the character of the community, to enhance the safety of the public, to promote more pedestrian/bike facilities and to maximize the economic benefit of IL Route 255.”
Problem Statement – Further Analysis

The transportation problems in the Alton-Godfrey study area relate to:

• Lack of Connectivity
 – Between major generators
 • Lewis & Clark CC
 • IL 3/111 commercial areas
 • IL 255
 – To US 67 at IL 3/111
 • Drivers forced to use local roads
Project Needs

Lack of Connectivity

Between Major Generators

• IL Route 255
• L&CCC
• Commercial Area along IL Route 3/111
Project Needs

Lack of Connectivity

Between Major Generators

- IL Route 255
- L&CCC
- Commercial Area along IL Route 3/111
Project Needs

Lack of Connectivity

To US 67
- From IL Route 3/111
- Drivers forced to use local roads
Project Needs

The transportation problems in the Alton-Godfrey study area relate to:

• Capacity and Safety
 – Level of Service and Delay
 • Humbert & North Alby
 • Humbert & IL 3/111
 • Alton Sq. Mall Dr. & IL 3/111
 – Critical Crash Sections
 • Humbert, North Alby, Seminary, Union School
 – Concern about numerous at-grade railroad crossings
Project Purpose

“The purpose of the project is to make improvements to the local roadway system, to improve continuity and connectivity between its major traffic destinations and IL Route 255, as well as to provide better connections between IL Route 3/111 and US Route 67.”
Review of Road Function
Examples of Road Function

The planning and design of every road project should involve the determination of the *function* of that road.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial</td>
<td>• High Mobility</td>
</tr>
<tr>
<td></td>
<td>• Low Access</td>
</tr>
<tr>
<td>Collector</td>
<td>• Balance of Mobility and Access</td>
</tr>
<tr>
<td>Local</td>
<td>• Low Mobility</td>
</tr>
<tr>
<td></td>
<td>• High Access</td>
</tr>
</tbody>
</table>

Access vs. Mobility

- **Arterials**
- **Collectors**
- **Locals**

Proportion of Service
Examples of Road Function

Freeway Arterial

- Highest type of arterial
- Fully-controlled access
- Function focuses on mobility
- Higher speeds

Il Route 255
Examples of Road Function

Arterial

- Often limited access
- Function focuses on mobility but allows for some access
- Speeds can be high, but lower at access points

Homer Adams Pkwy.

Mobility

Land Access
Examples of Road Function

Major Collector

- Function is blended between mobility and access
- Speeds vary depending on access
Examples of Road Function

Minor Collector

- Function is blended between mobility and access
- Speeds generally lower but vary depending on access

![Minor Collector Diagram]

Tolle Ln.
Examples of Road Function

Local
• Function focuses on access
• Speeds are low
• Characterized by end destinations: (subdivisions, business parks)

Mobility
Land Access

Wedgewood Dr.
Review of Crash and Traffic Data
Crash Analysis – Critical Locations

- Crash Analysis timeframe 5-years 2006-2010
- Crash Data gathered for 17.3 miles of roadway
- 1508 crashes during 5-year period (300+- per year)
- 420 injuries and 8 fatalities during period

● Fatal Crash Location

● Critical Crash Location

— Critical Crash Segment
Traffic Analyses

Effect of IL 255 Opening and Future Growth

- Increases on:
 - Humbert (110%)
 - N. Alby (30%)
 - Seminary (s/o 255) (64%)
 - Tolle Lane (40%)

- Decreases on:
 - Seiler (-69%)
 - Seminary (n/o 255) (-55%)
Alternative Development Process
Alternative Development Process

Data Collection – Problem Statement

Numerous Corridors

Initial Screening

Fewer Corridors

Second Screening

Alignments

Final Screening

Preferred Alternative

We're Here
Alternative Development Process

• What is a Corridor?
 – A broad band intended to encompass a wide area for the development of a range of transportation improvements
 – Can be 1,000 to 1,500 feet wide
 – Are not representative of actual impacts

• What is an Alignment?
 – A narrower band intended to represent a specific roadway improvement
 – Are narrower – between 100 and 400 feet wide
 – Represent an area used to quantify actual impacts
Alternative Development

- Must meet the project Purpose and Need
- Cost-effective transportation facilities
- Balances mobility, community needs and the environment
- Keep safety paramount
- Involve stakeholders
- Address all modes
- Uses all appropriate disciplines
- Applies flexibility in design standards
- Incorporates aesthetics
- Local agencies encouraged to participate
Alternative Development

- Must include “No-build” alternative
- Build alternatives
 - Improve existing
 - New location
- Modal and operational (where appropriate)
 - Transportation System Management alternatives (lane striping, traffic signals, parking areas)
 - Transit (Bus, commuter rail, light rail)
 - Pedestrians/Bicycles
- Avoid or minimize and mitigate impacts to resources
Evaluation of Alternatives
Evaluation of Alternatives

Screening Process

No Build Alternative

Purpose & Need

Avoidance

Feasibility

Range of Alternatives in EIS

Possible Alternatives
Evaluation of Alternatives
Feasibility

• Alternatives must address these project purposes:

 – Improve local system continuity and connectivity

 – Provide for roadway functionality that is compatible with travel patterns
Evaluation of Alternatives

Feasibility

• Alternatives must address the stated project needs:
 – General Lack of Connectivity
 • To/from IL 255, IL 3/111, and L&CCC
 • Between US 67 and IL 3/111
 • Multi-Modal Needs
 – Capacity and Safety
 • Levels of Service, Critical Crash Sections
 • At-grade Railroad Crossings in the Study Area
Evaluation of Alternatives
Feasibility

Other Considerations

Alternatives should:

- Be practical from a technical and economic standpoint
- Employ common sense rather than simply be desirable to a certain user group
- Foster informed decision making and public participation
Evaluation of Alternatives

Resources to Consider

- Communities, housing, businesses (incl. effects of noise)
- Land use
- Traffic patterns
- Wildlife, habitat, endangered species
- Waters of the U.S. including wetlands
- Archaeology, historic properties and districts
- Parklands, recreation areas, and open space
- Agricultural land
- Air quality conformity

Other factors to consider:
- Cost
- Constructability
Evaluation of Alternatives
Direct Impacts

- Example of Direct Impact

Diagram:
- Proposed Highway (Action)
- Wetland
Evaluation of Alternatives

Indirect Impacts

- Example of Indirect Impact

Proposed Highway (Action)

Siltation & runoff into wetland results in water quality degradation
Evaluation of Alternatives
Cumulative Impacts

- Example of Cumulative Impacts

- Proposed Highway (Action)
 - New development:
 - more siltation and runoff
 - Siltation & runoff into wetland results in water quality degradation

- New Road (Future Action)
 - Leaky drums from old factory
Evaluation of Alternatives

Significance

Impacts - What defines significance?

- What determines context?
 - Visible Elements – physical, environmental, aesthetic and transportation
 - Invisible Elements – values, cultures, traditions, politics and expectations

Context + Intensity

Significant Impact
Development of Preliminary Corridors
Preliminary Corridors
General Discussion / Action Items / Next CAG Meeting
Thanks for your participation in the Alton-Godfrey Transportation Study