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3.15 Seismic Design 
 

This design guide focuses on simple and practical techniques which can be used for the 

analysis and design of typical bridges in Illinois for earthquake loadings.  More sophisticated 

methods are not discouraged by the Department given that the designer has the expertise.  The 

primary format of this guide is to provide examples with discussion and commentary.  Example 

Bridges No. 1 and No. 4 are the most complete.  General guidance is also provided beyond the 

scope of the specific example structures for many other bridge types and potential design 

scenarios.  The intent is to cover as broad a range of subjects as possible in this relatively short 

forum.  Examples 1, 2 & 3 focus on bridges commonly built on the State and Local Systems.  

Examples 2 and 3 either illustrate a variation on Example 1 which requires a demonstration of a 

separate set of methods and calculations for clarity, or builds upon concepts already presented.  

Example 4 deals with a class of bridges historically constructed on the Local Bridge System, 

single and multi-span simply supported PPC deck beam structures.  These bridges have some 

special characteristics and design considerations (which includes the flexible design option 

described in Section 3.15.8 of the Bridge Manual) that are unique compared to other structure 

types built in the State.  Taken as a whole, this design guide is intended as an abbreviated 

primer on the design of typical bridges in Illinois for earthquake loadings. 

 

The design of superstructure-to-substructure connections along with seat widths (Level 1 and 

Level 2 Redundancies in the Department’s ERS framework) is straightforward and not covered 

in Examples 1 to 3.  However, Example 4 does because simply supported PPC deck beam 

bridges have some special design considerations for the Level 1 and 2 Redundancies.  See 

also Sections 3.7 and 3.15 of the Bridge Manual for more information. 

 

This design guide deals with both the 1000 yr. (LRFD) and 500 yr. (LFD) design return period 

earthquakes.  Both will still be relevant for bridges in Illinois for the foreseeable future with the 

importance of the 500 yr. event decreasing over time.  Example 1 juxtaposes the seismic design 

methods and calculations for an identical bridge for both the 1000 yr. and 500 yr. events in order 

to highlight the differences and similarities between the two, and serves as a transitional 

reference for the designer.  Example 1 also demonstrates that the increases in concrete 

member strengths, the number of piles required, etc. when going from the 500 yr. to the 1000 

yr. design event are not overly dramatic. 
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The following is an outline of provided examples: 

 
Example 1 
3-Span Wide Flange Bridge with Pile Supported Multiple Circular Column Bents, Open 
Pile Supported Stub Abutments (Pile Bents), and No Skew 

 

1. Determination of Bridge Period – Transverse Direction 
a. Weight of Bridge for Seismic Calculations 

b. Global Transverse Structural Model of the Bridge 

c. Transverse Pier Stiffness for Un-cracked and Cracked Columns 

d. Transverse Abutment Stiffness 

e. Transverse Superstructure Stiffness 

f. Uniform Load Method Transverse Period Determination for Un-cracked Columns 

g. Uniform Load Method Transverse Period Determination for Cracked Columns 

2. Determination of Bridge Period – Longitudinal Direction 
a. Weight and Global Longitudinal Structural Model of the Bridge 
b. Longitudinal Pier Stiffness for Un-cracked and Cracked Columns 
c. Uniform Load Method Longitudinal Period Determination for Un-cracked and 

Cracked Columns 
3. Determination of Base Shears – 500 Year Design Earthquake Return Period 

a. Design Response Spectrum (LFD) 
b. Transverse Base Shear 
c. Longitudinal Base Shear 

4. Determination of Base Shears – 1000 Year Design Earthquake Return Period 
a. Design Response Spectrum (LRFD) 
b. Transverse Base Shear 
c. Longitudinal Base Shear 

5. Frame Analysis and Columnar Seismic Forces for Multiple Column Bent – 500 
and 1000 Year Design Earthquake Return Period 

a. Pier Forces – Dead Load 
b. Pier Forces – Transverse Overturning 
c. Pier Forces – Transverse Frame Action 
d. Pier Forces – Longitudinal Cantilever 
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6. Seismic Design Forces for Multiple Column Bent Including R-Factor, P-Δ, and 
Combination of Orthogonal Forces – 500 and 1000 Year Design Earthquake 
Return Period 

a. R-Factor 

b. P-Δ 

c. Summary and Combination of Orthogonal Column Forces Used for Design 

7. Column Design Including Overstrength Plastic Moment Capacity – 500 and 1000 

Year Design Earthquake Return Period 
a. Column Design for Axial Force and Moment 

b. Column Design for Shear 

c. 1000 Year Return Period Plastic Shear Determination Using Overstrength 

8. Pile Design Overview 

 
Example 2 
Example 1 Bridge with a Skew of 30° for the 500 Year Design Earthquake Return Period 
 

1. Determination of Bridge Periods and Base Shears – 500 Year Design 

Earthquake Return Period 

2. Frame Analysis and Columnar Seismic Forces for Multiple Column Bent – 500 

Year Design Earthquake Return Period 
a. Pier Forces – Dead Load 

b. Pier Forces from Global Transverse Base Shear  

c. Pier Forces from Global Longitudinal Base Shear  

3. Seismic Design Forces for Multiple Column Bent Including R-Factor, P-Δ, and 

Combination of Orthogonal Forces – 500 Year Design Earthquake Return Period 
a. R-Factor 

b. P-Δ 

c. Summary and Combination of Orthogonal Column Forces Used for Design 
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Example 3 
Overview of Bents with Rectangular or Trapezoidal Columns 
 

1. Overview of Seismic Design of Multiple Column Bents with Rectangular or 

Trapezoidal Columns for Bridges with No Skew 

2. Overview of Seismic Design of Multiple Column Bents with Rectangular or 

Trapezoidal Columns for Bridges with Skew 

 

Example 4 
Design of a Simply Supported Multi-Span PPC Deck Beam Bridge for 1000 yr. Design 
Return Period Earthquake Using the Flexible Option 
 

1. Determination of Bridge Period – Transverse Direction 
a. Weight of Bridge for Seismic Calculations 

b. Global Transverse Structural Model of the Bridge 

c. Transverse Pier Stiffness 

d. Transverse Abutment Stiffness 

e. Transverse Superstructure Stiffness 

f. Finite Element and Simplified Transverse Period Determination 

2. Determination of Bridge Period – Longitudinal Direction 
a. Weight and Global Longitudinal Structural Model of the Bridge 

b. Longitudinal Pier Stiffness 

c. Longitudinal Abutment Stiffness 

d. Uniform Load Method Longitudinal Period Determination 

3. Determination of Base Shears – 1000 Year Design Earthquake Return Period 
a. Design Response Spectrum (LRFD) 

b. Transverse Base Shear 

c. Longitudinal Base Shear 

4. Frame Analysis and Pile (Columnar) Seismic Forces for Pile Bents 
a. Pier Forces – Dead Load 

b. Pier Forces – Transverse Overturning 

c. Pier Forces – Transverse Frame Action 

d. Pier Forces – Longitudinal Cantilever 
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5. Frame Analysis and Pile (Columnar) Seismic Forces for Abutments 
a. Abutment Forces – Dead Load 

b. Abutment Forces – Transverse Overturning 

c. Abutment Forces – Transverse Frame Action 

d. Abutment Forces – Longitudinal Cantilever 

6. Seismic Design Forces for Pile Bent Including R-Factor, P-Δ, and Combination of 

Orthogonal Forces 
a. R-Factor 

b. P-Δ 

c. Summary and Combination of Orthogonal Column Forces Used for Design 

7. Seismic Design Forces for Abutment Including R-Factor, P-Δ, and Combination 

of Orthogonal Forces 
a. R-Factor 

b. P-Δ 

c. Summary and Combination of Orthogonal Column Forces Used for Design 

8. Combined Axial Force and Bi-Axial Bending Structural Capacity Check for Piles 

in Bents 
a. Load Case 1 – Longitudinal Dominant 

b. Load Case 2 – Transverse Dominant 

9. Combined Axial Force and Bi-Axial Bending Structural Capacity Check for Piles 

in Abutments 
a. Load Case 1 – Longitudinal Dominant 

b. Load Case 2 – Transverse Dominant 

10. Discussion of Flexible Versus Standard Design Options 

11. Pile Shear Structural Capacity Check, and Pile Connection Details, and Cap 

Reinforcement Details 
a. Shear Capacity Check of HP Piles 

b. Anchorage Details at Piers and Abutments for HP Piles 

c. Added Pier Cap Confinement Reinforcement 

12. Dowel Bar Connection of Beams to Pier and Abutment Caps 

13. Minimum Support Length (Seat Width) Requirements at Piers and Abutments 

14. Overview of Example Bridge Design With Metal Shell Piles 
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a. Determination of Bridge Periods and Base Shears – Transverse and Longitudinal 

Directions 

b. Frame Analysis and Seismic Design Forces for Piers and Abutments 

c. Combined Axial Force and Bending Structural Capacity Check for Piers and 

Abutments 

d. Pile Shear Structural Capacity Check, Minimum Steel, and Pile Connection 

Details  

e. Pier Cap Reinforcement, Connection of Beams to Pier and Abutment Caps, and 

Support Length 
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Example 1 
 
3-Span Wide Flange Bridge with Pile Supported Multiple Circular Column Bents, Open 
Pile Supported Stub Abutments (Pile Bents), and No Skew 
 

62 ft. 77 ft. 62 ft.
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Beams W36 x 170; ksi 29000E  ksi; 3372E  ksi; 36f  psi; 3500f scy
'
c ====  

 

1.  Determination of Bridge Period – Transverse Direction 
 

1.a.  Weight of Bridge for Seismic Calculations 

 

The mass (weight) of a bridge used for seismic design is usually computed first.  The mass 

to consider is that portion of the superstructure and substructures which can reasonably be 

expected to accelerate horizontally during an earthquake.  The total weight of the 

superstructure including any cross bracing, diaphragms, and parapets should always be 

included along with the weight of the cap beams and half the columns or walls at piers.  In 

this example, the abutments do not have a reasonable expectation of accelerating to any 

great degree and are not included.  If a bridge has integral abutments, the weight of the end 

diaphragms should be included (bottom of deck to bottom of bearings).  Future wearing 

surface (“Added Surface” in the figure above) can be added to the weight of a bridge 

considered for seismic design at the designer’s discretion.  The total calculated weight can 
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be assumed to act uniformly along the entire length of the superstructure.  In more 

sophisticated analyses, the masses are “lumped” at finite element nodal points. 

 

 a.  Beams  W36 X 170 

    Weight per foot 1 beam  =  0.17 k/ft. 

    No. of beams    = 7 

    Beam weight per foot  = 1.19 k/ft. 

 b.  Deck  Slab thickness   = 7.5 in. (8.0 in. is Std.) 

    Added surface thickness = 1.5 in. 

    Width (Assume added  

    surface extends full deck 

    width)    = 42 ft. 

    Deck weight per foot 

    ( ) 3.ft
k

.ft
.in 15.42125.15.7 ××+ = 4.725 k/ft. 

 c.  Parapet  One parapet   = 0.45 k/ft. 

    Two parapets   =  0.90 k/ft. 

 d.  Cross Frames  

      and Bracing Estimate as 5% of beams = 0.060 k/ft. 

 e.  Pier Cap Length    = 42 ft. 

    Width    = 2.5 ft. 

    Height    = 4 ft. 

    Pier cap weight 

    3.ft
k15.45.242 ×××   = 63 kips 

    Weight of 2 caps  = 126 kips 

 f.  Columns Diameter    =  2.5 ft. 

    ½ Column Height  = 6.25 ft. 

    Total No. of Columns  =  8 

    Total weight of columns 

    ( ) 815.025.6 3.ft
k2

2
5.2 ×××π  = 36.82 kips 
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 g.  Total Weight Length of Bridge  = 201 ft. 

    a. + b. + c. + d.  = 6.875 k/ft. 

    or a. + b. + c. + d.  = 1381.875 kips 

    e. + f.    = 162.82 kips 

    Total Weight   = 1544.7 kips 

 

1.b.  Global Transverse Structural Model of the Bridge 

 

Very simple or more complex global structural models of bridges for dynamic and equivalent 

static analyses can be used at the designer’s discretion.  For many typical bridges in Illinois, 

models that tend to be fairly simple produce reasonable and adequate results for seismic 

design.  Shown below is the global analysis model used for the current example. 

 

kAbut kAbutkPier kPier

ITransverse Superstructure

62 ft. = 744 in. 77 ft. = 924 in. 62 ft. = 744 in.

201 ft. = 2412 in.

kAbut kAbutkPier kPier

ITransverse Superstructure

62 ft. = 744 in. 77 ft. = 924 in. 62 ft. = 744 in.

201 ft. = 2412 in.
 

 

Methods for the determination of superstructure, pier and abutment stiffnesses (moment of 

inertia and spring constants) are given below.  At a minimum, the simplest global model 

should include the stiffnesses of the superstructure and piers with the abutments pinned.  

Simplification to this level, however, is not recommended but still acceptable.  The Uniform 

Load Method of Analysis, which is advocated by the Department, tends to over estimate 

reactions at the abutments.  Assigning stiffness to the abutments, as opposed to pinned 

supports that are rigid for transverse displacement, produces more accurate results when 

using the Uniform Load Method.  

 

The current example bridge can be straightforwardly analyzed with hand methods largely 

because there are not more than 3 spans and the structure is “very symmetric”.  For cases 
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where bridges are not symmetric, simple finite element models of the same type shown 

above can be used for the analysis.  If desired, spring finite elements can also be replaced 

with axial force/truss elements with an equivalent spring stiffness based upon k = 

(Area)(Mod. of Elasticity)/(Length). 

 

For most cases, the (fundamental) period of the “first mode of vibration” is typically all that 

needs to be computed because it dominates the dynamic displacement response of a bridge 

(i.e. multi-modal analysis is not required for typical or regular bridges).  The displaced 

“shape” of the first mode generally approximates that of a half sine wave.  This shape will be 

apparent in subsequent sections below when the fundamental periods of the Example 1 

bridge with un-cracked and cracked pier sections are calculated.  The second mode of 

vibration will tend to approximate a full sine wave, the third 1 ½ sine waves, etc.  In complex 

dynamic analyses which use finite elements and time as a variable, the “equations of 

motion” are coupled together and difficult to solve in the time domain.  Transforming the 

equations of motion and responses of a structure into the frequency domain uncouples them 

in such a way that the equations become “solvable”.  Solutions in the frequency domain, at 

any point in time, essentially can be thought of as giving the relative magnitude of 

importance each mode has in the total displacement.  For many structures, the first mode 

dominates the solutions and, as such, the responses from higher modes can be neglected 

for engineering design purposes. 

 

1.c.  Transverse Pier Stiffness for Un-cracked and Cracked Columns 

 

For multiple column bent piers, the columns are considered to be the “weak link” or 3rd tier 

seismic fuse according to IDOT’s ERS plan.  It should be assumed that the columns deflect 

in reverse curvature with fixed ends at the bottom of the cap and the top of the crashwall 

(clear height).  The equations below determine the stiffness. 

 

 Column Moment of Inertia  diameter column  where; 
4

2
I col

4
col

c =φ
⎟
⎠
⎞

⎜
⎝
⎛φπ

=  

  

 Column Stiffness  height column clearh  where; 
h

IE12
k c3

c

cc
c =

××
=    
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For a simple analysis, the foundation should be assumed fixed.  When the piles are sized, 

the seismic design forces used will typically be unreduced by an R-Factor (designed 

elastically).  So, the foundation will be significantly stiffer than the columns in the piers. 

 

For the 500 year design earthquake return period event, the columns may be assumed to be 

“un-cracked”.  At the 1000 year level, the columns should be considered cracked with an 

effective moment of inertia of ½ that of Ic.  The stiffness of the piers for the current example 

is given below. 

 

 Column Moment of Inertia  ( ) 4
4

c in. 8.39760
4

in. 15 I =
×π

=    

 Cracked Moment of Inertia  44
2/c in. 4.198802

in. 8.39760I ==  

 Clear Height of Column  12.5 ft. = 150 in.  

 Concrete Modulus of Elasticity Ec = 3372 ksi 

 Stiffness of Un-cracked Column in.
k

3c  7.476 
150

8.39760337212k =
××

=   

 Stiffness of Cracked Column  in.
kin.

k
c  4.2382

 7.476k ==   

 Stiffness of Un-cracked Pier  in.
k

in.
k

Pier  8.1906columns 4 7.476k =×=  

 Stiffness of Cracked Pier  in.
k

in.
k

Pier  6.953columns 4 4.238k =×=  

 

Notes for Other Pier Types: Similar calculations to those above can also be used to 

determine the transverse stiffness of individual column drilled shaft bents, solid wall encased 

drilled shaft bents, drilled shaft bents with crashwalls, individually encased pile bents, solid 

wall encased pile bents, solid wall piers supported by a footing and piles, modified 

hammerhead piers supported by a footing and piles, and trapezoidal multiple column bents 

with crashwalls.  In addition, at the designer’s discretion, hammerhead piers may be 

analyzed as a single column in reverse curvature above ground with similar techniques to 

those used above. 

 

The “clear height” of individual column drilled shaft bents and individually encased pile bents 

should be taken from the depth-of-fixity in the soil to the bottom of the cap beam.  The clear 
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height for solid wall encased drilled shaft bents and solid wall encased pile bents should be 

from the depth-of-fixity to the bottom of the solid wall encasement.  The walls are assumed 

to be rigid links in the transverse direction (or a deep cap beam).   The clear column height 

for drilled shaft bents with a crashwall and trapezoidal column bents with crashwall is the 

same as that for the current example with the drilled shafts below the wall or the piles below 

the footing assumed fixed.  The clear column height of solid wall and modified hammerhead 

piers supported by a footing and piles should be taken from the depth-of-fixity to the bottom 

of the footing.  The walls and footings are assumed to be rigid links for these two cases.  

The clear column height for hammerhead piers can be taken from the bottom of the 

cantilevered cap to the top of the footing at the designer’s discretion.  Hammerheads can 

tend to behave somewhat as a single column pier as opposed to a wall.   

 

Methods for dealing with the added complexities of skew, and skew in combination with 

cross-sections which are not round are given in Examples 2 and 3. 

 

1.d.  Transverse Abutment Stiffness 

 

In this example, the stiffness of the abutments will be calculated assuming only the steel H-

piles contribute.  The piles can be modeled as individual columns in soil in reverse curvature 

with a clear height extending from the depth-of-fixity in the soil to the bottom of the abutment 

cap.  Batter in the piles for situations such as the current example can be ignored. The 

designer may also consider the stiffness provided by the abutment and wings bearing on the 

soil or any other sources of stiffness judged appropriate.  For example, integral abutments 

may be modeled with an additional rotational spring which simulates the stiffness of the 

diaphragm.  For most cases, though, this is not necessary or recommended. The stiffness of 

the abutments for the current example is given below. 

 

 Piles     HP 12 x 74 

 Number of Piles   9 

 Weak Axis Pile Moment of Inertia Ip = 186 in.4 

 (Typical Orientation for Illinois) 

 Steel Modulus of Elasticity  Es = 29000 ksi 

Pile Effective Height   8.0 ft. = 96.0 in. 

(from Geotechnical Analysis- 
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see also Appendix C)  

 Stiffness of Abutment    
h

IE12 piles) .no(
k 3

p

ps
Abut

×××
=   

      in.
k

3Abut  4.658
0.96

1862900012 9k =
×××

=  

 

1.e.  Transverse Superstructure Stiffness 

 

During an earthquake, the superstructure deflects horizontally as one “effective beam”.  The 

deck and beams are the primary contributors to the moment of inertia.  The parapets may or 

may not be considered to contribute to the superstructure moment of inertia.  For typical 

IDOT bridges, it may be most realistic to consider the parapets half effective.  Future 

wearing surface should not be considered to contribute to the superstructure moment of 

inertia.  “Shear lag” in the beams should always be accounted for by considering them half 

effective.  The beam areas “lag” in effectiveness for resisting horizontal loads as the 

distance from the deck increases.  For the current example, the parapets have been 

assumed to be fully effective.  The superstructure moment of inertia calculations are given 

below. 

 

 Es    29000 ksi 

 Ec    3372 ksi 

 n (modular ratio)   8.6 

 Slab Thickness  7.5 in. 

 Slab Width   42 ft. 

 Slab Moment of Inertia  ( ) 473
ft.

in.
12
1

slab .in 100.812ft. 425.7I ×=×××=  

 Area of 1 Parapet  432 in.2 

 Area of 1 Beam  50 in.2 

 Transformed Beam Area ( ) 2
steel in.  215

2
506.8

Lag Shear for 2
Beam  1 AreanA =

×
=

×
=  
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480 in.

6 spaces @ 6 ft. = 36 ft.

1
3

Bm.
2

Bm.
3

Bm.
1

Bm.
1

Bm.
2

Bm.
3

480 in.

6 spaces @ 6 ft. = 36 ft.

1
3

Bm.
2

Bm.
3

Bm.
1

Bm.
1

Bm.
2

Bm.
3

 
 

Moment of Inertia of Superstructure Table

No. I0 (In
4) A (in2) I (in4)

Parapet 2 ---- 432 240 2.49E+07 4.98E+07
Slab 1 8.00E+07 ---- ---- ---- 8.00E+07

Beam 1 2 ---- 215 72 1.11E+06 2.23E+06
Beam 2 2 ---- 215 144 4.46E+06 8.92E+06
Beam 3 2 ---- 215 216 1.00E+07 2.01E+07

ITotal 1.610E+08 in4

(in) x )(in xA 42×

 
 

1.f.  Uniform Load Method Transverse Period Determination for Un-cracked Columns 

 

The first step in the method is to calculate the maximum displacement of the bridge for a 

simple uniform load, usually 1 k/in. or 1 k/ft.  The maximum displacement in this example will 

occur at the center of the structure.  If a bridge has asymmetries such as unequal span 

lengths, or piers and abutments with different stiffnesses; the maximum deflection will occur 

somewhere other than the center of the structure.  The total uniform load applied to the 

structure is divided by the maximum deflection to determine an equivalent very simple 

bridge stiffness.  The equivalent stiffness encompasses the effects of the superstructure, 

abutment and pier stiffnesses.  The period is a function of the weight of the structure 

(determined above) and the equivalent stiffness using a basic equation from structural 

dynamics.  The calculations for the period of the Example 1 bridge are given below with 

hand methods for piers which are un-cracked.  The period for cracked analysis is also given 

with minimal calculations shown as the method for period determination is the same with 

different pier stiffnesses. 
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a.  Find the deflection of the bridge for a uniform load of 1 k/in. assuming there are 

no piers and the abutments are infinitely stiff (deflection of a simple beam). 

 

 w (uniform load) 1 k/in. 

 L (bridge length) 201 ft. = 2412 in. 

 Ec   3372 in.2 

 ITotal   1.61 x 108 in.4 

 Deflection  
Totalc

4

c IE384
Lw5

××
××

=δ  

    .in 812.0
1610000003372384

241215 4

c =
××

××
=δ  

 

b.  Find the deflection of the bridge for a uniform load of 1 k/in. assuming no piers, 

an infinitely stiff superstructure and abutment springs (simple deflection of a pair 

of springs).  

 

w (uniform load) 1 k/in. 

 L (bridge length) 201 ft. = 2412 in. 

 kAbut   658.4 k/in. 

 Deflection  
Abut

e k
2

Lw ×

=δ  

    in. 832.14.658
2
24121

e =

×

=δ  

 

c. Total deflection for a uniform load of 1 k/in. without piers considered. 

 

0.812 in.

1.383 in.
 

 

 Total Deflection in. 644.2ecT =δ+δ=δ  
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d. Find the estimated deflection at the center of the bridge for a point load, P, at 

each pier location without considering pier stiffness and with infinitely stiff 

abutments. 

a and x

L

a and xL – 2a

P P

δvc

a and x

L

a and xL – 2a

P P

δvc

 
  

  L   2412 in. 

  x   744 in. 

  a   744 in. 

 Ec   3372 ksi 

  ITotal   1.61 x 108 in.4 

  Deflection  ( )22

Totalc
vc a4L3

IE24
aP

×−×
××

×
=δ  

     ( )22
vc 744424123

161000000337224
744P

×−×
××
×

=δ  

     P0008702.0vc =δ  

 

e. Find the estimated deflection at the pier locations for a point load, P, at each pier 

location without considering pier stiffness and with infinitely stiff abutments. 

 

a and x

L

a and xL – 2a

P P

δvp

a and x

L

a and xL – 2a

P P

δvp
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  L   2412 in. 

  x   744 in. 

  a   744 in. 

 Ec   3372 ksi 

  ITotal   1.61 x 108 in.4 

  Deflection  ( )22

Totalc
vp xa3aL3

IE6
xP

−×−××
××

×
=δ    

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−×

−××

××
×

=δ 22vp 7447443
74424123

16100000033726
744P  

     P0007239.0vp =δ  

 

f. Find the estimated uniform deflection for a point load, P, at each pier location 

without considering pier stiffness, with an infinitely stiff superstructure, and with 

springs at the abutments. 

 

P P

δve

P P

δve

 
 

  kAbut   658.4 k/in. 

  Deflection  P0015188.04.658
P

k
P

Abut
ve ===δ  

 

g. Find the ratio (fraction) of the total deflection at the pier locations computed 

above to the total deflection at center span computed above (steps d., e., and f.). 

 

 δvc   0.0008702P 

 δvp   0.0007239P 

 δve   0.0015188P 
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  Fraction (fr)  9388.0
0008702.00015188.0
0007239.00015188.0fr

vcve

vpve =
+
+

=
δ+δ

δ+δ
=  

      

h. Find the pier reactions (V0) in terms of the actual estimated deflection of the 

bridge, δmax. 

 

 Fraction (fr)  0.9388 

 kPier   1906.8 k/in. 

 Pier Reactions  maxPiermax0 8.19069388.0kfrV δ××=×δ×=  

    max0 1.1790V δ=  

 

i. Solve for δmax 

 

    

maxmaxvcve

max0

vcve

2765.41.1790002389.0

1.1790VP
:Set

P002389.0

δ=δ×=δ+δ∴

δ==

=δ+δ

 

    And: 

   The deflection of the bridge is the actual estimated  

deflection of the structure without the piers minus that due  

to the piers. 

maxTmax 2765.4 δ−δ=δ  

in. 501.02765.5
644.2

max ==δ  

 

 j. Solve for the equivalent stiffness of the bridge. 

 

 w (uniform load) 1 k/in. 

 L (bridge length) 201 ft. = 2412 in. 

  δmax   0.501 in. 

  Bridge Stiffness in.
k

max
Bridge  4.4814

501.0
24121Lwk =

×
=

δ
×

=  
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 k. Solve for the period of the bridge. 

 

  Total Weight  1544.7 kips 

  Accel. of Gravity (g) 386.4 in./sec.2 

  Bridge Stiffness  4814.4 k/in. 

  Period (T)  sec. 18.0
4.48144.386

7.15442
kg
W2T

Bridge

=
×

π=
×

π=  

 
1.g.  Uniform Load Method Transverse Period Determination for Cracked Columns 

 

In order to compute the period of the bridge with cracked columns, steps h. through k. from 

above need only be repeated. 

 
h. Find the pier reactions (V0) in terms of the actual estimated deflection of the 

bridge, δmax. 

 

 Fraction (fr)  0.9388 

 kPier   953.6 k/in. 

 Pier Reactions  maxPiermax0 6.9539388.0kfrV δ××=×δ×=  

    max0 2.895V δ=  

 

i. Solve for δmax. 

 

    

maxmaxvcve

max0

vcve

1386.22.895002389.0

2.895VP
:Set

P002389.0

δ=δ×=δ+δ∴

δ==

=δ+δ

 

    And: 

   The deflection of the bridge is the actual estimated  

deflection of the structure without the piers minus that due  



Design Guides            3.15 - Seismic Design 

Page 3.15-20                 May 2008 

to the piers. 

maxTmax 1386.2 δ−δ=δ  

in. 842.01386.3
644.2

max ==δ  

 

 j. Solve for the equivalent stiffness of the bridge. 

 

 w (uniform load) 1 k/in. 

 L (bridge length) 201 ft. = 2412 in. 

  δmax   0.842 in. 

  Bridge Stiffness in.
k

max
Bridge  6.2864

842.0
24121Lwk =

×
=

δ
×

=  

 

 k. Solve for the period of the bridge. 

 

  Total Weight  1544.7 kips 

  Accel. of Gravity (g) 386.4 in./sec.2 

  Bridge Stiffness  2864.6 k/in. 

  Period (T)  sec. 23.0
6.28644.386

7.15442
kg
W2T

Bridge

=
×

π=
×

π=  

 

When the columns are cracked, the period of the bridge increased from 0.18 sec. to 0.23 

sec. or about 28% greater than the un-cracked case.  This is because the superstructure 

stiffness is dominant which is typical of many Illinois bridges.  It is also somewhat unusual 

for the transverse period of a typical bridge in Illinois to be near 1.0 sec.  Consequently, if a 

long (around 0.75 sec. and greater) transverse period is calculated, there may either be an 

error in the designer’s calculations or the bridge may not be modeled properly. 
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2.  Determination of Bridge Period – Longitudinal Direction 
 

2.a.  Weight and Global Longitudinal Structural Model of the Bridge 
 
The mass of the bridge used for calculation of the longitudinal period is the same as that 

calculated above for the transverse direction.  For this example, the piers are assumed to be 

the only elements of the bridge which contribute stiffness to the longitudinal period.  The 

superstructure acts as a rigid link between the two piers with the abutments assumed to 

provide no resistance to seismic load.   

 

It is also acceptable and/or more correct to consider that the abutments contribute to the 

stiffness of the bridge in the longitudinal direction depending on the structure configuration.  

For example, if the abutments are integral, at a minimum, the stiffness of the piles should be 

part of the longitudinal global model.  If the abutments are not integral, the designer may 

consider the resistance of the beams bearing against a backwall and the soil behind it for 

one abutment, or the resistance of the piles, or both.  It is also acceptable to consider the 

abutments not contributing to the stiffness in the longitudinal direction even if the bearings 

are “fixed” but the abutment is an open stub type (pile bent).  Making this choice implies that 

the designer is “relying” upon the piers to a greater extent than the abutments for resistance 

of seismic forces in the longitudinal direction.  If adequate seat widths are provided at the 

abutments according the 2nd tier of seismic redundancy in IDOT’s ERS strategy, this method 

just ensures a more conservative pier design in the longitudinal direction.   

 
2.b.  Longitudinal Pier Stiffness for Un-cracked and Cracked Columns 

 

The columns for multiple circular column bents with cap beams should be assumed to 

deflect as cantilevers which deform from fixed ends at the top of the crashwall to the bottom 

of the cap.  The rigid body rotation of the cap should also be included in the stiffness 

determination.  The equations and derivation below determine the stiffness, and the figure 

provides an illustration for guidance. 

 

 Column Moment of Inertia  diameter column  where; 
4

2
I col

4
col

c =φ
⎟
⎠
⎞

⎜
⎝
⎛φπ

=  
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 Column Stiffness w/o Cap height column clearh  where; 
h

IE3
k c3

c

cc
c =

××
=  

  

kc = 3 x Ec x Ic / hc
3

hc

hCapCap Beam
k = ∞

Col. Stiffness 

Cap Beam
k = 

Seismic Load

kc = 3 x Ec x Ic / hc
3

hc

hCapCap Beam
k = ∞

Col. Stiffness 

Cap Beam
k = 

Seismic Load

 
 

 Column Stiffness w/ Cap 

   

  

 

 

 

 

 

 

 

 

 

 
 

 

For a simple analysis, the foundation should be assumed fixed.  When the piles are sized, 

the seismic design forces used will typically be unreduced by an R-Factor (designed 

elastically).  So, the foundation will be significantly stiffer than the columns in the piers.  The 

crashwall does deflect, but this effect can be ignored for the determination of the longitudinal 

period. 

 

TD
 Column per Pier Long

ATCTD

TCCapA

A

cc

2
c

TC

TC

cc

3
c

c
TCTCc

TC

Pk

:is then stiffness long. column pier
final the and  is , ,deflection total The

h
:is , beam,  cap 

the of top the at pier the of deflection added The

IE2
hP

:is , column,
 a of top the at rotation the P, load a For

IE3
hP

k
P   Pk

:is , column, 
a of top the at deflection the P, load a For

δ=

δ+δδ

θ×=δ
δ

××
×

=θ

θ

××
×

==δ⇒=δ×

δ
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For the 500 year design earthquake return period event, the columns may be assumed to be 

“un-cracked”.  At the 1000 year level, the columns should be considered cracked with an 

effective moment of inertia of ½ that of Ic.  The stiffness of the piers for the current example 

is given below. 

 

 Column Moment of Inertia  ( ) 4
4

c in. 8.39760
4

in. 15 I =
×π

=    

 Cracked Moment of Inertia  44
2/c in. 4.198802

in. 8.39760I ==  

 Clear Height of Column  12.5 ft. = 150 in.  

 Concrete Modulus of Elasticity Ec = 3372 ksi 

 Stiffness of Un-cracked Column in.
k

3c  2.119 
150

8.3976033723k =
××

=   

 Stiffness of Cracked Column  in.
kin.

k
c  6.592

 2.119k ==   

 Stiffness of Un-cracked Column   

 w/ Cap      

  

  

  

  

  

 

 

 

 

 

 

  

Stiffness of Un-cracked Pier  in.
k

in.
k

Pier  0.322columns 4 5.80k =×=  

 Stiffness of Cracked Pier  in.
kin.

k
Pier 161.02

 0.322k ==  

 

Notes for Other Pier Types: Similar calculations to those above can also be used to 

determine the longitudinal stiffness of individual column drilled shaft bents, solid wall 

in.
k

TD
 Column per Pier Long

ATCTD

TD

TCCapA

A

2

TC

TC

TCTCc

TC

 5.80Pk

:is cap  withstiffness column The

0.01242P0.004028P0.008389P  
:deflection total the ,

P004028.0P00008391.0in. 48h
:cap of top the at deflection added the ,

P00008391.0
8.3976033722

150P

:P load a for column of top at rotation ,

P008389.02.119
P   Pk

:P load a for column of top at deflection 

=δ=

=+=δ+δ=δ
δ

=×=θ×=δ
δ

=
××

×
=θ

θ

==δ⇒=δ×

δ
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encased drilled shaft bents, drilled shaft bents with crashwalls, individually encased pile 

bents, solid wall encased pile bents, solid wall piers supported by a footing and piles, 

hammerhead and modified hammerhead piers supported by a footing and piles, and 

trapezoidal multiple column bents with crashwalls. 

 

The “clear height” of individual column drilled shaft bents and individually encased pile bents 

should be taken from the depth-of-fixity in the soil to the bottom of the cap beam.  The clear 

height for solid wall encased drilled shaft bents and solid wall encased pile bents should be 

from the depth-of-fixity to the bottom of the solid wall encasement.  The walls are assumed 

to be rigid links in the longitudinal direction (or a deep cap beam which rotates significantly).   

The clear column height for drilled shaft bents with a crashwall and trapezoidal column 

bents with crashwall is the same as that for the current example with the drilled shafts below 

the wall or the piles below the footing assumed fixed.  The clear column height of solid wall, 

hammerhead and modified hammerhead piers supported by a footing and piles should be 

taken from the top of the footing to the bottom of the cap as appropriate.  The walls are 

treated as one large column bending about the weak axis with the foundations assumed 

fixed. 

 

2.c.  Uniform Load Method Longitudinal Period Determination for Un-cracked and Cracked  

  Columns 

 

For the current example, the Uniform Load Method can be used in a more straightforward 

manner than for the transverse case to calculate the longitudinal bridge period with the 

equation given below. 

 

bridge of massM where;
kPiers of .No

M2T
pier

=
×

π=  

 

If a bridge has unequal pier and/or abutment stiffnesses, the total stiffness for all 

substructure elements considered should be substituted in the denominator of the equation 

above.  Bridge periods for the current example with un-cracked and cracked columns are 

given below.   
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 Mass of Bridge   .in
.seck 2998.3

4.386
7.1544

g
Bridge of WeightM −===  

 Period with Un-Cracked Columns sec. 50.0
0.3222

998.32T =
×

π=  

 Period with Cracked Columns sec. 70.0
0.1612

998.32T =
×

π=  

 

When the columns are cracked, the period of the bridge increased from 0.50 seconds to 

0.70 seconds or about 40% greater than the un-cracked case.  This is because the 

superstructure stiffness does not play a role in the fundamental period except as a link to the 

substructures which is typical of most Illinois bridges.  It is also typical for the longitudinal 

period of bridges without significant skew to be a fair amount larger than the transverse 

period. 

 

3.  Determination of Base Shears – 500 Year Design Earthquake Return Period 
 

3.a.  Design Response Spectrum (LFD) 

 

Acceleration Coefficient, A  0.14g (See Below) 

Seismic Performance Category  B ( )19.0A09.0 ≤<  

Importance Category   Essential 

Soil Profile Type    II 

Site Coefficient, S    1.2 

 

Seismic Design LocationSeismic Design Location
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Transverse Direction for the Uncracked Column Case: 

 

Cs   = 

0.35 Use

35.A5.263.0
18.0

2.114.02.1

T

SA2.1
3

2
3

2

∴

=>=
××

=
×

 

 

Values greater than 2.5A are expected in the transverse direction for many if not most 

typical bridges with short to medium height columns built in Illinois. 

 

Longitudinal Direction for the Uncracked Column Case: 

 

Cs   = 

0.32 Use

35.A5.232.0
50.0

2.114.02.1

T

SA2.1
3

2
3

2

∴

=<=
××

=
×

 

 

Values less than 2.5A are expected in the longitudinal direction for many if not most typical 

bridges which are modeled without a contribution from the abutments. 

 

3.b.  Transverse Base Shear 
 

Total Base Shear for the Bridge = kips 6.5407.15440.35  Bridge of .WtCs =×=×  

 

Or      in.
k 224.0in.2412

kips 6.540 =  

 

The transverse seismic base shear at the piers (VBase Shear P (T)) can be determined as the 

ratio of the uniform base shear load calculated above (0.224 k/in.) to the applied uniform 

load from the period calculations (1 k/in.) times the deflection at the center of the bridge for a 

1 k/in. load (0.501 in.) times the stiffness of a pier in relation to the deflection at the center of 

the structure (1790.1δmax). 

 

VBase Shear P (T)   = kips 9.2001.1790501.0
1
224.0

=××  
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The transverse seismic base shear at the abutments (VBase Shear A (T)) is calculated from 

statics as the total base shear (540.6 kips) divided by 2 minus the base shear at a pier 

(190.6 kips) 

 

VBase Shear A (T)   = kips 4.699.200
2

6.540
=−  

 

3.c.  Longitudinal Base Shear 
 

Total Base Shear for the Bridge = kips 3.4947.15440.32  Bridge of .WtCs =×=×  

 

For this example the longitudinal seismic base shear (VBase Shear P (L)) is distributed equally to 

each pier.  If the pier stiffnesses were unequal, the base shear would be distributed 

according to the relative stiffness magnitudes of each pier. 

 

VBase Shear P (L)   = kips 2.247
2

3.494
=  

 

The longitudinal seismic base shear at the abutments (VBase Shear A (L)) is zero. 

 

VBase Shear A (L)   = 0 

 

4.  Determination of Base Shears – 1000 Year Design Earthquake Return Period 

 
4.a.  Design Response Spectrum (LRFD) 

 

Reference Appendix 3.15.A of the Bridge Manual and the LRFD Code for more information 

on the formulation of the 1000 yr. Design Response Spectrum. 

 

Ss (Short Period Acceleration)  1.035g (See Below) 

S1 (1-Sec. Period Acceleration)  0.259g (Map Not Shown)  

Soil Type     Class D (In Upper 100 ft. of Soil Profile) 

Fa (Short Period Soil Coef.)  1.09 

Fv (1-sec. Period Soil Coef.)  1.88 
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SDS      g128.1035.109.1SF sa =×=  

SD1      g487.0259.088.1SF 1v =×=  

Seismic Performance Zone  3 ( )1-3.15.2 Table BM   5.0SF3.0 1v ≤<  

Importance Category   Essential 

 

Short period, 0.2 sec., design acceleration map (circa 2005, 2008 LRFD map similar) and 

seismic design location (same location as for 500 yr. design return period earthquake). 

 

Seismic Design LocationSeismic Design Location

 
 

Definitions and a graphical representation of the design response spectrum (with 

approximate acceleration at zero sec. period). 
 

0

1.6

0 1 2

SDS = FaSs

SD1 = FvS1

T
SS 1D
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Ts    = 432.0128.1
487.0 =  sec. 

T0    = 086.0432.02.0 =×  sec. 

Less than T0, Sa  = 4512.0T87.7S4.0T
T

S
6.0 DS

0

DS +=+  

Greater than Ts, Sa = T
487.0  

(Where T = Tm, and Sa = Csm in the LRFD Code) 

 

Plot of the design response spectrum. 

 

 
 

Transverse Direction for the Cracked Column Case: 

 

Sa (Csm in the LRFD Code) = 1.128 (T = 0.23 < Ts = 0.432 sec.) 

 

Values at the “plateau” (analogous to 2.5A in the LFD Code) are expected in the transverse 

direction for many if not most typical bridges with short to medium height columns built in 

Illinois. 
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Longitudinal Direction for the Cracked Column Case: 

 

Sa (Csm in the LRFD Code) = 7.07.0
487.0 = (T = 0.7 > Ts = 0.432 sec.) 

 

Values past the plateau (analogous to 2.5A in the LFD Code) are expected in the 

longitudinal direction for many if not most typical bridges which are modeled without a 

contribution from the abutments. 

 

4.b.  Transverse Base Shear 
 

Total Base Shear    = kips 4.17427.15441.128  Bridge of .WtSa =×=×  

 

Or      in.
k 722.0in.2412

kips 4.1742 =  

 

The transverse seismic base shear at the piers (VBase Shear P (T)) can be determined as the 

ratio of the uniform base shear load calculated above (0.722 k/in.) to the applied uniform 

load from the period calculations (1 k/in.) times the deflection at the center of the bridge for a 

1 k/in. load (0.842 in.) times the stiffness of a pier in relation to the deflection at the center of 

the structure (895.2δmax). 

 

VBase Shear P (T)   = kips 2.5442.895842.0
1
722.0

=××  

 

The transverse seismic base shear at the abutments (VBase Shear A (T)) is calculated from 

statics as the total base shear (1742.4 kips) divided by 2 minus the base shear at a pier 

(503.2 kips) 

 

VBase Shear A (T)   = kips 27.032.544
2

4.1742
=−  

 

4.c.  Longitudinal Base Shear 
 

Total Base Shear    = kips 3.10817.15440.70  Bridge of .WtSa =×=×  
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For this example the longitudinal seismic base shear (VBase Shear P (L)) is distributed equally to 

each pier.  If the pier stiffnesses were unequal, the base shear would be distributed 

according to the relative stiffness magnitudes of each pier. 

 

VBase Shear P (L)   = kips 7.540
2

3.1081
=  

 

The longitudinal seismic base shear at the abutments (VBase Shear A (L)) is zero. 

 

VBase Shear A (L)   = 0 

 

There are significant differences in the seismic base shears between the 500 and 1000 yr. 

design earthquakes.  The total base shear in the transverse direction was elevated from 

540.6 to 1742.4 kips (222% increase) and in the longitudinal direction it was elevated from 

494.3 to 1081.3 kips (119% increase), respectively.  The effect of the total increase in base 

shear in the transverse direction, however, was mitigated because of the “redistribution” of 

reactions to the abutments due to the assumption that the piers will crack during a 

significant seismic event.  At the piers, the transverse base shear increased from 200.9 to 

544.2 kips (171%), while at the abutments it increased from 69.4 to 327.0 kips (371%).  

There is no redistribution of forces in the longitudinal direction for this bridge. 

 

5.  Frame Analysis and Columnar Seismic Forces for Multiple Column Bent – 500 and  

    1000 Year Design Earthquake Return Period 
 

5.a.  Pier Forces – Dead Load 

 

Dead Load of Superstructure 

(Use Wt. from Previous Calculations) = 1544.7 kips 

Bridge Length    = 201 ft. 

Dead Load Per ft. of Bridge  = .ft
k685.7201

7.1544 =  

Dead Load Per Pier (Use Statics) = ⎟
⎠
⎞

⎜
⎝
⎛ +× CenterSpanOuterSpan L

2
1L

8
5685.7  
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      = kips 7.59377
2
162

8
5685.7 =⎟

⎠
⎞

⎜
⎝
⎛ ×+××  

No. of Columns Per Pier   = 4 

Dead Load Per Column   = kips 4.1484
7.593 =  

 

Added Dead Load for Bot. Half of 1 Col. 

Not Considered in Pt. 1.a. Sub-Pt. f. = kips 60.4Bridge in Columns 8
kips 82.36 =  

Design Dead Load Per Column  = 148.4 + 4.6 = 153.0 kips 

 

5.b.  Pier Forces – Transverse Overturning 

 

The seismic base shear at each pier theoretically acts through the centroid of the 

superstructure.  It is acceptable to assume/approximate that the centroid acts at the center 

of the deck.  From statics, shown below, an “overturning moment” produces axial 

compression and tension across the bent.  The seismic base shear also produces “frame 

action” forces in the columns of the bent and acts at the top of the columns (the 

“eccentricity” or “arm” of the base shear is taken into account through consideration of the 

overturning moment)  Frame action force analysis is given in the following section.  

Appendix A contains overturning moment solutions for bents with 2 to 13 columns.  

 

Sp

d d

PSTarm
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d
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d
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500 year return period: 

Sp (Base Shear at Pier)   = 200.9 kips 

arm (Base Shear Eccentricity)  

Cap Height + Bearing Height + Beam 

Height+ ½ Deck Thickness  = ( ) ft. 8125.712
5.735.04 2

1 =+++  

d (Center-to-Center Col. Distance) = 12 ft. 

M (Overturning Moment)   = ft.-k  5.15698125.79.200 =×   

PST (Maximum Axial Columnar Force) = kips  2.3912
5.1569

10
3

=  

 

1000 year return period: 

Sp (Base Shear at Pier)   = 544.2 kips 

M (Overturning Moment)   = ft.-k  6.42518125.72.544 =×   

PST (Maximum Axial Columnar Force) = kips  3.10612
6.4251

10
3

=  

 

5.c.  Pier Forces – Transverse Frame Action 

 

Taking account of the overturning moment “transfers” the seismic base shear at the pier to 

the tops of the columns.  This shear produces moments, shears and axial forces in each 

column of the bent through “frame action.”  Free body diagram solutions for these seismic 

forces are shown below.  The determination of moment and shear in each column is more 

straightforward than for axial force.  The simple solutions for moment in the columns are 

very accurate while conservative solutions for axial force due frame action are emphasized 

for the critical outside columns.  Appendix B contains frame action columnar axial force 

solutions for bents with 2 to 6 or more columns.   
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d d 2
hVM ST

ST
×=

VST VST VST

VST

VST

MST

MST

h

4
SV P

ST =

d

VST

d d 2
hVM ST

ST
×=

VST VST VST

VST

VST

MST

MST

h

4
SV P

ST =

d

VST

 
 

500 Year Return Period: 

Sp (Base Shear at Pier)   = 200.9 kips 

Column Height (Clear)   = 12.5 ft. 

VST (Shear Per Column)   = kips  2.504
9.200 =  

MST (Moment Per Column)  = ft.-k  8.3132
5.122.50 =×  

 

1000 Year Return Period: 

Sp (Base Shear at Pier)   = 544.2 kips 

VST (Shear Per Column)   = kips  1.1364
2.544 =  

MST (Moment Per Column)  = ft.-k  6.8502
5.121.136 =×  
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500 Year Return Period: 

MST (Moment Per Column)  = 313.8 k-ft. 

d (Center-to-Center Col. Distance) = 12 ft. 

PSB (Maximum Axial Columnar Force) = kips  7.4312
8.31367.1 =×  

 

1000 Year Return Period: 

MST (Moment Per Column)  = 850.6 k - ft. 

PSB (Maximum Axial Columnar Force) = kips  4.11812
6.85067.1 =×  

 

5.d.  Pier Forces – Longitudinal Cantilever 

 

Only simple cantilever statics is required to determine the seismic shear and moment in the 

longitudinal direction. 

 

500 Year Return Period: 

SL (Base Shear at Pier)   = 247.2 kips 
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Column Height (Clear)   = 12.5 ft. 

Cap Beam Height     = 4.0 ft. 

VSL (Shear Per Column)   = kips  8.614
2.247 =  

MColBot(SLB) (Moment Per Column)  = ( ) ft.-k  7.101945.128.61 =+×  

 

1000 Year Return Period: 

SL (Base Shear at Pier)   = 540.7 kips 

VSL (Shear Per Column)   = kips  2.1354
7.540 =  

MColBot(SLB) (Moment Per Column)  = ( ) ft.-k  8.223045.122.135 =+×  

 

6.  Seismic Design Forces for Multiple Column Bent Including R-Factor, P-Δ, and   

     Combination of Orthogonal Forces – 500 and 1000 Year Design Earthquake Return  

     Period 
 

6.a.  R-Factor 

 

R-Factors should only be used to reduce the moments calculated from the base shears of 

an “elastic” analysis as was conducted above.  As recommended in the Bridge Manual 

(Section 3.15.4.4.3) and the LRFD Code for “Essential Bridges” an R-Factor of 3.5 will be 

used for the bent in this example.  LFD Div. I-A recommends a value of 5 for this bent type.  

The R-Factor tables in LRFD and LFD have some differences which have the potential to 

cause confusion.  There have also been questions over the years about how the described 

bridge types in the R-Factor tables in both LRFD and LFD “fit” with actual Illinois bridges in 

practice.  Section 3.15.4.4 of the Bridge Manual attempts to answer some of these 

questions by providing specific recommendations for R-Factors for a number of common 

pier types built in Illinois. 

 

6.b.  P-Δ 

 

Exacting methods for determining amplification of bending moments for P-Δ effects is not 

considered overly significant by the Department in most cases for seismic design of bridges.  

For bents of the type in this example, which have a relatively short clear column height (10 
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to 15 ft.), the amplification can be estimated as 5% for both the transverse and longitudinal 

directions.  In the range of 15 to 20 ft., the amplification may be estimated as 10%.  For 

greater heights, P-Δ effects may either be calculated or estimated by adding 5% for each 5 

ft. increment above 20 ft. clear height.  The estimates given above also apply to multiple 

column drilled shaft bents with crashwall.  

 

Columns in individually encased piles bents and individual drilled shaft bents tend to have 

longer “effective clear heights” extending from the bottom of the cap to the depth-of-fixity.  

The methods given above for estimating P-Δ effects for these bent types are permitted at 

the discretion of the designer. 

 

P-Δ effects should not be considered for walls, hammerheads, modified hammerheads, solid 

wall encased pile bents, solid wall encased drilled shaft bents, and piles analyzed and 

designed as columns. 

 

6.c.  Summary and Combination of Orthogonal Column Forces Used for Design 

 

The forces on the two exterior columns in the example bridge are focused on for design 

because they experience the most extreme earthquake forces.  The pier columns should be 

designed for the possibility of earthquake accelerations which can be in opposite transverse 

directions and opposite longitudinal directions.  They are also required to be designed for 

the cases “mostly longitudinal and some transverse accelerations” (Longitudinal Dominant – 

Load Case 1) and “some longitudinal and mostly transverse accelerations” (Transverse 

Dominant – Load Case 2). 

 

Since the bridge in this example has round columns and is not skewed, the summary and 

combination of orthogonal forces used for design is straightforward.  More complex cases 

with skew and non-round columns are considered in subsequent examples in this design 

guide.  The equations below present the basic method for combination of orthogonal forces. 

 

Load Case 1 (Longitudinal Dominant)  Load Case 2 (Transverse Dominant) 

 
T
z

L
z

D
z V3.0V0.1V +=     T

z
L
z

D
z V0.1V3.0V +=  
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T
y

L
y

D
y V3.0V0.1V +=     T

y
L
y

D
y V0.1V3.0V +=  

T
z

L
z

D
z M3.0M0.1M +=     T

z
L
z

D
z M0.1M3.0M +=  

T
y

L
y

D
y M3.0M0.1M +=     T

y
L
y

D
y M0.1M3.0M +=  

TLD P3.0P0.1P +=     TLD P0.1P3.0P +=  

 

For the bridge in this example the Longitudinal- and z-axes, and Transverse- and y-axes 

coincide as shown below. 

 

62 ft. 77 ft. 62 ft.

L, z

T, y

L, z

T, y

62 ft. 77 ft. 62 ft.

L, z

T, y

L, z

T, y

 
 

Shown below are the Load Case 1 and Load Case 2 forces used for seismic design with R-

Factor (3.5), P-Δ amplification (1.05), and axial dead load (153 kips) effects all considered 

for the 500 and 1000 year design return period earthquakes. 

 

500 Year Return Period – Load Case 1 – Longitudinal Dominant (per column):  

 

kips  8.618.610.103.0V0.1V3.0V0.1V SL
T
z

L
z

D
z ==+=+=  

kips   1.152.503.0V3.000.1V3.0V0.1V ST
T
y

L
y

D
y ==+=+=  

ft.-k  2.285.3
8.31305.13.05.3

M05.13.000.1M3.0M0.1M STT
z

L
z

D
z =×=×+=+=  
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ft.-k  9.3055.3
7.101905.10.103.05.3

M05.10.1M3.0M0.1M SLBT
y

L
y

D
y =×=+×=+=  

kips 9.177 and 1.128                                                                                                                

7.432.393.0153PP3.000.1PPP3.0P0.1P SBSTDead
DTLD

=

=+±=+±+=→+=

 

Note that the Department recommends a load factor of 1.0 be used for dead loads for LRFD 

and LFD design. 

 

The design shears and moments can be added (as vectors) since the columns are round in 

order to further simplify the design forces. 

 

kips  6.631.158.61V 22D =+=  

ft.-k  2.3079.3052.28M 22D =+=  

kips  177.9 and 1.128PD =  

 

500 Year Return Period – Load Case 2 – Transverse Dominant (per column):  

 

kips  5.188.613.000.1V3.0V0.1V3.0V SL
T
z

L
z

D
z ==+=+=  

kips 50.22.500.1V0.103.0V0.1V3.0V ST
T
y

L
y

D
y ==+=+=  

ft.-k  1.945.3
8.31305.10.15.3

M05.10.103.0M0.1M3.0M STT
z

L
z

D
z =×=×+=+=  

ft.-k  8.915.3
7.101905.13.000.15.3

M05.13.0M0.1M3.0M SLBT
y

L
y

D
y =×=+×=+=  

kips 235.9 and 1.70                                                                                                                

7.432.390.1153PP0.103.0PPP0.1P3.0P SBSTDead
DTLD

=

=+±=+±+=→+=
 

 

Further simplification of the design shears and moments leads to the following. 

 

kips  5.532.505.18V 22D =+=  

ft.-k  5.1318.911.94M 22D =+=  

kips  235.9 and 1.70PD =  
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1000 Year Return Period – Load Case 1 – Longitudinal Dominant (per column):  

 

The same form of the calculations above leads to the following simplified design forces. 

 

kips  2.1418.402.135V 22D =+=  

ft.-k  6.6736.762.669M 22D =+=  

kips  220.4 and 6.85PD =  

 

1000 Year Return Period – Load Case 2 – Transverse Dominant (per column):  

 

The same form of the calculations above leads to the following simplified design forces. 

 

kips  0.1421.1366.40V 22D =+=  

ft.-k  7.3242.2558.200M 22D =+=  

kips  377.7 and 7.71PD −=  (Negative indicates tension) 

 

 

7.  Column Design Including Overstrength Plastic Moment Capacity – 500 and 1000  

    Year Design Earthquake Return Period 
 

7.a.  Column Design for Axial Force and Moment 

 

Since the columns in the example pier bents are round, a simple uni-axial bending – axial 

force interaction diagram formulation can be used for design and compared with the forces 

calculated above.  For the 500 year earthquake return period, the example bridge is in 

Category B.  As such, the φ factor (strength reduction factor) used for design should be 0.75.  

For the 1000 year earthquake return period, the example bridge is located in Zone 3 and the 

φ factor is 1.0 according to the recommendation in Section 3.15.4.4.1 of the Bridge Manual. 

 

 

 



Design Guides                     3.15 - Seismic Design 

May 2008           Page 3.15-41 

500 Year Return Period Column Design: 

 

In order to compare the design axial forces and moments calculated above to a “nominal” or 

unreduced column interaction diagram, they should be divided by the φ factor (0.75).  These 

computations are shown below. 

 

Load Case 1 – Longitudinal Dominant   Load Case 2 – Transverse Dominant  

 

ft.-k  6.40975.0
2.307MD

==φ    ft.-k  3.17575.0
5.131MD

==φ  

kips  170.8  75.0
1.128PD

==φ    kips  93.5  75.0
1.70PD

==φ  

kips  237.2  75.0
9.177PD

==φ    kips  314.5  75.0
9.235PD

==φ  

 

For design of the columns, try: 

 

10 - #9 bars (Gr. 60 A706 Bars) with #5 Spiral and a Clear Cover of 2 in.  The center-to-

center spacing of the vertical steel is about 7 ½ in. which is less than the suggested 8 in. 

maximum.  The percentage of steel in relation to the gross area of the column is about 1.4% 

which is well within the realm of reasonable for this bridge and the accelerations associated 

with the 500 year design earthquake. 

 

The column interaction diagram is shown below.  The load cases calculated above are 

superimposed on the diagram along with the load cases for the middle columns. 
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1000 Year Return Period Column Design: 

 

Since the φ factor is one for this case, the design axial forces and moments calculated 

above do not need to be transformed in order compare them to a “nominal” or unreduced 

column interaction diagram.  The forces from Load Cases 1 and 2 are repeated below. 

 

Load Case 1 – Longitudinal Dominant   Load Case 2 – Transverse Dominant  

 

ft.-k  6.673MD =      ft.-k  7.324MD =  

kips  6.85PD =      kips  7.71PD −=  

kips  220.4PD =      kips  377.7PD =  

 

For design of the columns, try: 

 

10 - #10 bars (Gr. 60 A706 Bars) with #5 Spiral and a Clear Cover of 2 in.  The center-to-

center spacing of the vertical steel is about 7 ½ in. which is less than the suggested 8 in. 

maximum.  The percentage of steel in relation to the gross area of the column is about 1.8% 
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which is well within the realm of reasonable for this bridge and the accelerations associated 

with the 1000 year design earthquake. 

 

The column interaction diagram is shown below.  The load cases calculated above are 

superimposed on the diagram along with the load cases for the middle columns. 

 

 
 

7.b.  Column Design for Shear 

 

For multiple column bents, the Department prefers that spirals and ties have a constant 

spacing for the full length of the column and required extensions into the cap beam and 

crashwalls.  Various detailing options for shear reinforcement are permitted and described in 

Section 3.15.5 of the Bridge Manual.  Specific details are not covered in this forum.  Rather, 

methods for determining the required bar sizes and spacing for shear reinforcement which 

satisfy the LRFD and LFD Specifications are focused on.  

 

The design requirements for shear are similar for Category B (LFD) and Zone 3 (LRFD).  A 

minimum amount of steel is required in plastic hinging regions for “confinement” to ensure 

flexural capacity integrity during an earthquake and the spirals or ties shall also satisfy 

strength requirements.  In Category B, the elastic shear (calculated above for this example) 

should be used for design.  For Zone 3, however, the lesser of the elastic shear or the shear 
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which causes plastic hinging in the columns may be used for design.  The shear which 

causes plastic hinging can be determined from a simple axial-flexural “overstrength” 

capacity analysis.  As recommended in Section 3.15.5.1 of the Bridge Manual, it is simplest 

to assume that the concrete strength is zero (Vc = 0.0) when designing columnar shear 

reinforcement without verifying whether some nominal value for Vc is allowed to be 

considered by LRFD or LFD.  Typically, at least the outer columns in multiple column bents 

either have a low compressive design force or are in tension.  When columns are in tension, 

the shear strength of the concrete should be taken as zero according to LRFD and LFD.  

The following are equations which should be used for the design of spirals in round columns 

with Vc = 0. 

 

Minimum steel required for confinement expressed as a volumetric ratio: 

 

yh

'
c

c

g
s f

f
1

A
A

45.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥ρ   (LRFD Eq. 5.7.4.6-1, LFD Div. I-A Eq. 6-4 and 7-4) 

 

And, 

 

yh

'
c

s f
f

12.0≥ρ    (LRFD Eq. 5.10.11.4.1d-1, LFD Div. I-A Eq. 6-5 and 7-5) 

 

Where: 

 

Ag  = gross area of concrete section (in.2) 

Ac  = area of core measured to the outside diameter of the spiral (in.2) 
'
cf   = compressive strength of concrete (ksi) 

fyh  = yield strength of spiral reinforcement (ksi) 

 

Strength of provided steel: 

 

s
dfA

V vyhv
s φ=φ    (LRFD Eq. 5.8.3.3-4, LFD Eq. 8-53) 
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Where: 

 

Av  = area of shear reinforcement within a distance s (in.2) 

dv  = effective shear depth (in.) 

s  = spacing of spiral (in.) 

φ  = 0.9 for LRFD and 0.85 for LFD (however, use 0.9 for LFD) 

 

The equation above for LRFD has been simplified according to the provisions in Article 

5.8.3.4.1.   

 

The equations for minimum required confinement steel for tied rectangular or trapezoidal 

columns are similar to those for round columns and found in the same referenced sections 

above.  When cross ties are used, which is common, they are counted in the total 

reinforcement area resisting the design shear.  The shear requirements for wall type piers 

are somewhat different than for columns.  However, they are not complex.  If a wall is 

designed as a column in its weak direction, the shear design method is the same as that for 

a column.  If a wall is not designed as column in its weak direction, it shall be designed for 

shear in the same manner as for the strong direction.  The minimum reinforcement ratios 

and shear strength design equations for walls (in the strong and possibly the weak direction) 

are given in LRFD 5.10.11.4.2 and LFD Div. I-A 7.6.3.  The provisions in both specifications 

are comparable. 

 

The shear design calculations for the 500 and 1000 year design return period earthquakes 

for the Example 1 bridge are given below using the elastic design forces.  The method for 

calculating the plastic design shear using “overstrength” is demonstrated afterward for the 

1000 year earthquake case.  Note, however, that for many typical bridges in Illinois, even 

those in Zones 3 and 4, the shear requirements might easily be met by using the elastic 

design shears. 

 

500 Year Return Period Shear Design: 

 

Minimum steel required, 

0087.0
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5.31
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1545.0
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And, 

 

0070.0
60

5.312.0
f
f

12.0
yh

'
c

s ==≥ρ  

 

Try #5 spirals at a spacing of 4 in. center-to-center, 

 

( ) OK 0087.00119.0
42230

31.04
sD

2
A4

turn spiral 1 in concrete of Volume
turn spiral 1 of Volume

core

v

s >=
×−−

×
=

×

⎟
⎠
⎞⎜

⎝
⎛

==ρ  

 

Dcore is the diameter of the column out-to-out of the spiral and Av is the area of 2 bars. 

 

kips 7.169
4

27.206031.029.0
s

dfA
V vyhv

s =
×××

=φ=φ  

 

The effective depth, dv, may be calculated with the method suggested below in the 

commentary of the LRFD Specifications. 

 

dv  = in. 27.2062.23
2

309.0
D

2
D9.0d9.0 r

e =⎟
⎠
⎞

⎜
⎝
⎛

π
+=⎟

⎠

⎞
⎜
⎝

⎛
π

+=  (LRFD C5.8.2.9) 

Where: 

 

D  =  gross diameter of column (in.) 

Dr  = diameter of the circle passing through the centers of longitudinal  

reinforcement (in.) 

 

Comparing the elastic design shear forces for Load Case 1 and Load Case 2 gives: 

 

Load Case 1: 63.6 < 169.7 OK 

Load Case 2: 53.5 < 169.7 OK 
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∴#5 spiral at 4 in. center-to-center spacing OK (and the comparisons above indicate that a 

spacing as large as 6 in. center-to-center may also be acceptable). 

 

1000 Year Return Period Shear Design: 

 

Minimum steel required, 

0087.0
f
f

1
A
A

45.0
yh

'
c
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g
s =⎟⎟

⎠

⎞
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f
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'
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Try #5 spirals at a spacing of 4 in. center-to-center, 
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+=  (LRFD C5.8.2.9) 

 

Comparing the elastic design shear forces for Load Case 1 and Load Case 2 gives: 

 

Load Case 1: 141.2 < 169.3 OK 

Load Case 2: 142.0 < 169.3 OK 

 

∴#5 spiral at 4 in. center-to-center spacing OK. 

 

7.c.  1000 Year Return Period Plastic Shear Determination Using Overstrength 

 

In Illinois, the determination of plastic shear capacity using overstrength should generally be 

confined to bridge types for which the plastic hinges in the substructure elements would 

form above ground at the piers during the design earthquake.  This typically entails bents 

with cap beams, crashwalls and multiple columns which are either circular or trapezoidal.  
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However, the Department does not discourage overstrength analysis for such pier types as 

individual column drilled shaft bents or drilled shaft bents with web walls. 

 

Once the columns have been designed to resist axial forces and moments in a ductile 

manner (with an R-Factor), the other components of the bridge can be designed for the 

lesser of the base shear which actually causes the columns to form plastic hinges or the 

elastic forces from the original analysis.  The “overstrength” of a column can be thought of 

as a simplified engineering estimate of the base shear required to cause plastic hinging.  For 

typical cases in Illinois, these components are usually only the columnar shear 

reinforcement and the piles. 

 

Overstrength analysis is reserved for bridges located in regions where design accelerations 

are considered significant.  For the 500 year design return period earthquake, this translates 

to LFD Seismic Performance Categories C and D and for the 1000 year seismic event it 

corresponds to LRFD Seismic Performance Zones 3 and 4 (and 2, but not explicitly). 

 

The overstrength column capacity should be calculated by one of two methods depending 

on the levels of axial forces used to design the vertical steel in a column.  When the design 

axial forces generally fall below the balanced failure point on the nominal column axial force-

moment interaction diagram, the overstrength of a concrete column should be determined 

by only multiplying the moment strength by 1.3.  If the design axial forces generally fall 

above the balanced failure point, the nominal axial and moment strengths should both be 

multiplied by 1.3.  Once the overstrength curve has been calculated, a simple procedure is 

used to determine the plastic shear capacities for the longitudinal and transverse directions.  

This procedure is outlined in LRFD Article 3.10.9.4.3 and LFD Div. I-A Article 7.2.2 for piers 

with either single or multiple columns.  A plot of the overstrength capacity for the pier 

columns of the Example 1 bridge is shown below for the 1000 year design earthquake. 
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Since the axial design forces fall below the balance point, only the nominal moment 

strengths were multiplied by 1.3.  The calculations and descriptions below detail the method 

for determining the plastic shear capacities for the transverse and longitudinal directions of 

the Example 1 bridge. 

 

Initial Plastic Moment Capacity: 

 

For multiple column bents, the initial design axial force used to determine the initial 

corresponding plastic moment capacity should be that from the dead load only.  Referring to 

the overstrength axial force-moment interaction diagram above, 

 

Initial Axial Dead Load   = 153 kips 

Initial Plastic Moment  = 944 kip-ft. 
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Initial Plastic Shear Capacity: 

 

The plastic shear capacities for the transverse and longitudinal directions are found with the 

same basic statics equations used above for determining elastic column moments.  The 

unknowns to solve for, though, are shears instead of moments. 

 

Long. Shear  

( )

kips 8.2282.574 Vand

nkips/colum 2.575.16
944V

ft. 4  ft. 5.12Vft.-kip 944M

Bent Long.Plastic 

Long.Plastic 

Long.Plastic P

=×=

==∴

+×==

 

 

Trans. Shear 

kips 0.6041514 Vand

nkips/colum 0.1515.12
2944V

2
ft. 5.12Vft.-kip 944M

Bent Trans.Plastic 

.nsPlasticTra

Trans.Plastic P

=×=

=×=∴

⎟
⎠
⎞

⎜
⎝
⎛×==

 

 

Initial Overturning and Frame Action Axial Forces from Initial Plastic Base Shears: 

 

Longitudinal  There are no overturning or frame action axial forces from base shears 

applied in the longitudinal direction.  Consequently, the initial longitudinal 

plastic shear calculated above is the final plastic shear. 

 

Transverse Using methods from the elastic analyses above. 

 

 Overturning: 

Sp (Base Shear at Pier) = 604.0 kips 

M (Overturning Moment) = ft.-k  8.47188125.7604 =×   

PST (Max. Axial Col. Force) = kips  0.11812
8.4718

10
3

=  

 

   Frame Action: 

Sp (Base Shear at Pier) = 604.0 kips 

VST (Shear Per Column) = kips  0.1514
0.604 =  



Design Guides                     3.15 - Seismic Design 

May 2008           Page 3.15-51 

MST (Moment Per Column) = ft.-k  8.9432
5.120.151 =×  

PSB (Max. Axial Col. Force) = kips  3.13112
8.94367.1 =×  

 

Total “Plastic” Axial Force: 

PDPlastic    = 153.0 + 118.0 + 131.3 = 402.3 kips 

 

Revised Overstrength Moment Resistance: 

 

Long.  Not required (see above). 

 

Trans. Taking PDPlastic (402.3 kips) as the design axial force (instead of just the 

dead load) and referring again to the overstrength axial force-moment 

interaction diagram above, a plastic moment of 1082 kip-ft. is obtained.  

The corresponding plastic shear per column is 173.1 kips and for the bent 

the plastic shear is about 692.4 kips.  This plastic base shear is within 

about 15% of the first base shear value (604.0 kips).  According to the 

method, a further iteration should be performed such that successive 

values of calculated plastic base shears are within 10% of each other.  

The next iteration would start at the “Overturning and Frame Action Axial 

Forces from Plastic Base Shears” step with a base shear of 692.4 kips.  

However, another iteration is not necessary because the calculated 

plastic base shear has already been shown to be greater than the design 

elastic shear (544.2 kips).  As such, the elastic force may be used for 

design. 

 

Overstrength Summary: 

 

Longitudinal Elastic Base Shear  = 540.7 kips 

   Plastic Base Shear = 228.8 kips 

 

Transverse Elastic Base Shear = 544.2 kips 

   Plastic Base Shear = ≈ 692 kips 
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According to the provisions of LFD Div. I-A, it can be interpreted as acceptable to use the 

plastic longitudinal base shear in conjunction with the elastic transverse base shear for the 

design of the columnar shear reinforcement and the piles for the Example 1 bridge.  This 

may not be the case for LRFD, though.  LRFD appears to steer the engineer towards 

“consistently” using either the elastic or plastic cases.  Either the LFD or apparent LRFD 

approach, however, is permitted by the Department (regardless of which code the bridge is 

being designed under) and left to the designer’s judgment. 

 

The results of the overstrength analysis and their potential impact on the design of the 

Example 1 bridge are somewhat typical for multiple column bents in Illinois.  As shown 

above, the benefits of overstrength analysis were not required to design the columnar shear 

reinforcement with a reasonable spiral size and spacing for the 1000 yr. seismic event.  As 

such, the use of overstrength analysis should be carefully considered by the designer.  For 

many cases in Illinois, it is more straightforward and simpler to use the elastic design forces 

calculated from the initial determination of the bridge periods.  

 

8.  Pile Design Overview 
 

Seismic design forces for the piles at piers and abutments in the Example 1 bridge can be 

determined with methods which are analogous to those described above for the pier columns in 

the transverse direction.  Each row of piles at the piers along the transverse and longitudinal 

directions can be treated as an individual frame in the soil as if it were a column bent.  For 

example, consider the case where the pier foundations for the Example 1 Bridge has two rows 

of ten piles.  In the transverse direction, there would be two pile bent frames with 9 “portals”, 

each analyzed as taking half the transverse base shear at a pier.  In the longitudinal direction, 

there would be ten single portal frames with each analyzed as taking one-tenth of the 

longitudinal base shear.  The overturning “moment arm” is longer for the piles and should 

extend down to the bottom of the footing.  Note that there is overturning moment for both the 

transverse and longitudinal directions.  In the longitudinal direction, the analysis is not for a 

cantilever as it is for the columns.  It is most straightforward to use the elastic base shears in the 

transverse and longitudinal directions in which the design moments are unreduced (R = 1.0).   

 

For many cases, the pile fixity depths for steel H-piles provided in Appendix C (which are 

presented in terms of “moment fixity” and not “deflection fixity”) can be used for design.  
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Guidance on the appropriateness of their use is also provided in Appendix C.  Overturning 

analysis solutions for cases with up to 13 columns or piles in a frame are provided in Appendix 

A.  Frame analysis solutions for any number of portals are provided in Appendix B.  Example 4 

may also be referenced for additional guidance concerning simple structural analysis techniques 

for piles in global and local models.  More complex or sophisticated analysis methods are not 

discouraged by the Department and may be appropriate depending on the bridge being 

designed. 

 

“Group Action” for piles may be considered by the designer, but this is not required when using 

the methods presented in the examples and appendices of this design guide for regular or 

typical bridges. 

 

Structurally, the piles should be designed for shear, and combined axial force (including 

compression and tension as appropriate) and bending.  Piles can be assumed to be continually 

braced throughout their length in the soil.  Pullout of the piles from the footing is also a 

consideration.  When required, special seismic pile anchorage details in footings should be used 

and are provided in Section 3.15.5.5 of the Bridge Manual.  Reference Parts 8 and 9 of Example 

4 for example calculations that check the structural capacity of steel H-piles. 

 

The piles in the Example 1 bridge could also be metal shell.  Metal shell piles should be 

designed structurally for shear, and combined axial force and moment just as H-piles are.  Metal 

shell piles behave as reinforced concrete columns in soil with the shell acting as the 

reinforcement.  Supplemental longitudinal (vertical) and shear/confinement (spiral) 

reinforcement may also be provided inside of metal shell piles to increase structural capacity.  

Appendix C provides fixity depths, and nominal axial force–moment strength interaction 

diagrams for metal shell piles without supplemental reinforcement.  See Section 3.15.5.5 of the 

Bridge Manual and Part 14 of Example 4 for additional guidance. 

 

Geotechnical considerations for the design of piles to resist seismic loadings are provided in 

Sections 3.10 and 3.15 of the Bridge Manual as well as Design Guide 3.10.1.  Guidance on 

liquefaction, lateral pile resistance in soil, pullout from the soil, etc. are among the 

considerations addressed.  
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Example 2 
 
Example 1 Bridge with a Skew of 30° for the 500 Year Design Earthquake Return Period 
 

The primary focus of this example is to examine the differences from Example 1 in how pier 

column seismic design forces are calculated when a bridge is skewed.  The methods described 

in Example 2 are also applicable to pile seismic design force calculations for this and other 

similar bridge types which are skewed.  The secondary focus of Example 2 is the effects of 

skew on the determination of bridge periods and base shears in the transverse and longitudinal 

directions. 
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1.  Determination of Bridge Periods and Base Shears – 500 Year Design Earthquake  

    Return Period 
 

For Example 2, assume that the weight of the bridge used for seismic/dynamic analysis 

calculations is the same as that for Example 1 (there is only a nominal increase in weight due to 

the increased length of the cap beams).  Further assume that the stiffness of the abutments is 

the same as that for the bridge in Example 1 even though the piles are at a 30° skew.  In reality, 

the abutment stiffnesses are comparable to those for the Example 1 case (See methods of 

Example 3 Part 2 and in Appendix C).  Consequently, this assumption does not introduce a 

significant “error” in the dynamic analysis of the structure.  The “global” transverse and 

longitudinal axes of the bridge are shown below along with the “local” pier axes. 
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For design, the transverse and longitudinal stiffnesses of the piers can be taken as the same as 

the Example 1 bridge with no skew.  This is because the columns are round and their 

stiffnesses were based only on the columns deforming in reverse curvature (transverse) and as 

cantilevers (longitudinal).  If the columns were of rectangular or trapezoidal cross-section, this 

assumption would not be valid.  Example 3 considers the more complex cases of a skewed 

bridge with rectangular and trapezoidal columns. 

 

Based upon the discussion above, it is acceptable for design purposes to take the transverse 

and longitudinal periods of the bridge as the same for both the skewed and non-skewed cases 

(Example 2 and Example 1, respectively).  Even if the stiffnesses of the abutment piles were 

modeled more “correctly”, the differences in the periods and calculated base shears would not 

be considered to have engineering significance.  Since the periods are essentially equivalent for 

the Example 1 and 2 structures, the base shears are also equivalent.  These are summarized 

again from Example 1 for the 500 yr. seismic design event. 

 

Transverse Period     =  0.18 sec. 

Pier Base Shear (VBase Shear P(T))  = 200.9 kips 

Abut. Base Shear (VBase Shear A (T) )  = 69.4 kips 

 

Longitudinal Period    = 0.50 sec. 

Pier Base Shear (VBase Shear P(L))  = 247.2 kips 

Abut. Base Shear (VBase Shear A (L) )  = 0 kips 
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2.  Frame Analysis and Columnar Seismic Forces for Multiple Column Bent – 500 Year  

    Design Earthquake Return Period 

 
When a bridge is skewed, the global transverse and longitudinal pier and abutment axes do not 

coincide with the local axes as shown above.  As such, a separate local transverse (y-axis) and 

longitudinal (z-axis) axis force analysis is required for both the global transverse (T-axis) and 

longitudinal (L-axis) axes.  These analyses are presented below for the exterior columns.  Note 

that the subscripts and superscripts for the axial forces, shears, and moments presented below 

are different from Example 1 for this more complex case.  They “match” the variables used 

when the forces are combined orthogonally in Section 3 of this example. 

 
2.a  Pier Forces – Dead Load 

 

Design Dead Load Per Column  =  153.0 kips (from Example 1) 

 

2.b.  Pier Forces from Global Transverse Base Shear  

 

The component of the global transverse (T-axis) base shear in the local transverse (y-axis) 

direction produces axial forces in the columns from overturning and frame action as well as 

moments from the columns deforming in reverse curvature.  The component of the global 

transverse base shear in the local longitudinal (z-axis) produces a cantilever moment.  The 

components of the global transverse base shear in the local y- and z-directions are given 

below. 

 

VT(Bent) = VBase Shear P(T)     = 200.9 kips 
)Bent(T

yV  = VT cos 30° = 200.9 cos 30°  = 174.0 kips 

)Bent(T
zV  = VT sin 30° = 200.9 sin 30°  = 100.5 kips 

 

The forces from overturning (moments about local z-axis, forces in local y-axis direction) 

are, 

 

 

 



Design Guides                     3.15 - Seismic Design 

May 2008           Page 3.15-57 

 

Sp

d d

PSTarm
0.33PST

d

PST

0.33PST

( )
( )

d
M

10
3P

dP2        
dP2M

armSM

ST

2
1

ST3
1

2
3

ST

p

=∴

×

+×=

×=

Sp

d d

PSTarm
0.33PST

d

PST

0.33PST

( )
( )

d
M

10
3P

dP2        
dP2M

armSM

ST

2
1

ST3
1

2
3

ST

p

=∴

×

+×=

×=

 
 

)Bent(T
yV  = Sp  = 174.0 kips 

arm    = 7.8125 ft. (Example 1)  

d      = 14 ft. 

M (Overturning Moment)  = ft.-k  4.13598125.70.174 =×   

T
SP   = PST  = kips  1.2914

4.1359
10
3

=  

 

The forces from frame action (moments about local z-axis, forces in local y-axis direction) 

are, 
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T
zM   = MST  = 271.9 k-ft. 

d     = 14 ft. 
T
BP   = PSB   = kips 32.4 14

9.27167.1 =×  

 

The moments about the local y-axis, and forces in the local z-axis direction are, 

 

SL      = 100.5 kips 

Column Height (Clear)  = 12.5 ft. 

Cap Beam Height    = 4.0 ft. 
T
zV   = VSL  = kips  1.254

5.100 =  
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T
yM   = MColBot(SLB) = ( ) ft.-k  2.41445.121.25 =+×  

 

2.c.  Pier Forces from Global Longitudinal Base Shear 

 

The component of the global longitudinal (L-axis) base shear in the local transverse (y-axis) 

direction produces axial forces in the columns from overturning and frame action as well as 

moments from the columns deforming in reverse curvature.  The component of the global 

longitudinal base shear in the local longitudinal (z-axis) produces a cantilever moment.  The 

components of the global longitudinal base shear in the local y- and z-directions are given 

below. 

 

VL(Bent) = VBase Shear P(T)     = 247.2 kips 
)Bent(L

yV  = VL sin 30° = 247.2 sin 30°  = 123.6 kips 

)Bent(L
zV  = VL cos 30° = 247.2 cos 30°  = 214.1 kips 

 

The forces from overturning (moments about local z-axis, forces in local y-axis direction) 

are, 

 

Sp

d d

PSTarm
0.33PST

d

PST

0.33PST

( )
( )

d
M

10
3P

dP2        
dP2M

armSM

ST

2
1

ST3
1

2
3

ST

p

=∴

×

+×=

×=

Sp

d d

PSTarm
0.33PST

d

PST

0.33PST

( )
( )

d
M

10
3P

dP2        
dP2M

armSM

ST

2
1

ST3
1

2
3

ST

p

=∴

×

+×=

×=

 
 

 



Design Guides            3.15 - Seismic Design 

Page 3.15-60                 May 2008 

)Bent(L
yV  = Sp  = 123.6 kips 

arm    = 7.8125 ft. (Example 1)  

d      = 14 ft. 

M (Overturning Moment)  = ft.-k  6.9658125.76.123 =×   

L
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10
3

=  

 

The forces from frame action (moments about local z-axis, forces in local y-axis direction) 

are, 
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)Bent(L
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Column Height (Clear)  = 12.5 ft. 
L
yV   = VST  = kips  9.304

6.123 =  

L
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5.129.30 =×  
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L
zM   = MST  = 193.1 k-ft. 

d     = 14 ft. 
L
BP   = PSB   = kips 23.0 14

1.19367.1 =×  

 

The moments about the local y-axis, and forces in the local z-axis direction are, 

 

SL      = 214.1 kips 

Column Height (Clear)  = 12.5 ft. 

Cap Beam Height    = 4.0 ft. 
L
zV   = VSL  = kips  5.534

1.214 =  

L
yM   = MColBot(SLB) = ( ) ft.-k  8.88245.125.53 =+×  
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3.  Seismic Design Forces for Multiple Column Bent Including R-Factor, P-Δ, and  

     Combination of Orthogonal Forces – 500 Year Design Earthquake Return Period 
 

3.a.  R-Factor 

 

R-Factor  = 3.5 (from Example 1) 

 

3.b.  P-Δ 

 

P-Δ Amplification  = 1.05 (from Example 1) 

 

3.c.  Summary and Combination of Orthogonal Column Forces Used for Design 

 

The equations for combination of orthogonal forces are repeated below from Example 1.  

Because the bridge is skewed, none of the terms will be equal to zero for Example 2.  R-

Factors and P-Δ amplification effects are also included in the calculations. 

 

Load Case 1 (Longitudinal Dominant)  Load Case 2 (Transverse Dominant) 
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Load Case 1 – Longitudinal Dominant:  

 

kips  0.611.253.05.530.1V3.0V0.1V T
z

L
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D
z =+=+=  
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ft.-k  1.3025.3
2.41405.13.05.3

8.88205.10.1M3.0M0.1M T
y

L
y

D
y =×+×=+=  

kips 2.215 and 9.90   4.321.293.00.237.200.10.153PP3.0P0.1P DTLD =+±+±=→+=  

 

(Note: Axial Dead Load = 153 kips) 

 

The design shears and moments can be added (as vectors) since the columns are round in 

order to further simplify the design forces. 

 

kips  2.750.440.61V 22D =+=  

ft.-k  1.3131.3024.82M 22D =+=  

kips  215.2 and 9.90PD =  

 

Load Case 2 – Transverse Dominant:  
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Further simplification of the design shears and moments leads to the following. 

 

kips  0.678.522.41V 22D =+=  

ft.-k  4.2267.2039.98M 22D =+=  

kips  227.6 and 4.78PD =  
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Example 3 
 
Overview of Bents with Rectangular or Trapezoidal Columns 
 
Examples 1 and 2, along with their associated discussions provide a number of techniques and 

guidance which can be used for the seismic bridge design of a large number of cases in Illinois 

which would be considered typical or common.  Example 3 provides an overview of typical 

situations in Illinois which have not been covered.  These are bridges with rectangular or 

trapezoidal columns, especially those on a skew.  The provided discussions can also be 

extended to the design of bridges with H-piles as appropriate. 

 

1.  Overview of Seismic Design of Multiple Column Bents with Rectangular or  

     Trapezoidal Columns for Bridges with No Skew 

 

For bridges with rectangular or trapezoidal column bents and no skew, there are only a few 

differences when designing for seismic loads when compared to designing bridges with round 

columns.  The rectangular column case is the simplest.  The techniques from Example 1 can be 

used with one exception being that there are two column moments of inertia to consider.  One is 

about the longitudinal axis of the bridge (and bent) and the other is about the transverse axis of 

the bridge (and bent).  However, the major complicating difference from bridges with round 

column bents is the design of the columns for axial force and moment.  The moments to 

consider are bi-axial.  At the 500 yr. design level seismic event, more “approximate” methods of 

bi-axial column design can be used.  At the 1000 yr. seismic event level, though, it is 

recommended that more precise design methods be used, although this is not explicitly required 

by the Department.  It is possible that excessive vertical steel may be called for by not using 

more sophisticated bi-axial column design techniques which usually entail the use of 

commercial software. 

 

The seismic design of bridges with no skew and trapezoidal columns adds another level of 

complexity above that of the consideration of just rectangular columns.  Probably the simplest 

method for developing a global finite element model of the bridge (for the purposes of period 

and base shear calculations) is to determine equivalent rectangular column moments of inertia 

for the trapezoidal columns about the transverse and longitudinal axes.  The deflections from 

equivalent rectangular columns can be equalized to those from simple finite element models of 
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a trapezoidal column about the weak and strong axis to obtain two simple equivalent moments 

of inertia for a column such that a value for the stiffness of the bent can be calculated for both 

directions.  The trapezoidal columns should be “discreetized” into about 5 to 10 finite elements.  

Note that a hammerhead pier can be considered as having a single trapezoidal column. 

 

At the local model level, when the vertical steel of trapezoidal columns is being designed, a full 

finite element model of the bent with standard frame elements would probably be the analysis 

method most designers would choose.  However, this is not always necessary, and the method 

chosen should be based upon the designers experience and judgment.  The critical moment 

location (plastic hinge location) for the design of trapezoidal columns is usually at the smallest 

cross-sectional slice of the column. 

 

2.  Overview of Seismic Design of Multiple Column Bents with Rectangular or  

     Trapezoidal Columns for Bridges with Skew 
 

The techniques from Examples 1 and 2, and the overview above can be used for the design of 

skewed bridges with rectangular or trapezoidal columns.  Presented in this section, though, is 

one additional method or tool which primarily facilitates the construction of simple global 

analysis models.  The cross-sections of rectangular or trapezoidal columns are “skewed” or 

rotated when the bridge is skewed.  As such, equivalent moments of inertia for rotated 

rectangular cross-sections can prove very useful for the calculation of bridge periods and base 

shears.  A simple illustration and equations for calculating equivalent moments of inertia for 

rotated sections are given below. 
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Example 4 
 
Design of a Simply Supported Multi-Span PPC Deck Beam Bridge for 1000 yr. Design 
Return Period Earthquake Using the Flexible Option 
 
The bridge presented in this example is a 3-span structure with stub abutments and pile bent 

piers.  The abutments have a single row of piles and the piles in the piers are individually 

encased.  The beams for each span are simply supported PPC deck beams.  The overlay on 

the deck is assumed to weigh 50 psf and is comprised of either bituminous or non-bituminous 

concrete.  It only adds to the dead weight of the bridge and is non-continuous.  The bridge is in 

a special class compared to the majority of other types of structures designed and built on the 

State and Local Bridge Systems.  However, it is common in Illinois and has been historically 

designed and constructed mostly on the Local Bridge System. 

 

29 ft. -2 in.

5 piles @ 6 ft. - 3 in. = 25 ft.

3 ft. - 6 in.

2 ft. - 6 in.

2 ft. - 6 in.

6 ft. - 0 in.

29 ft. -6 in.
2 ft. - 6 in.

7 piles @ 4 ft. - 2 in. = 25 ft.

40 ft. 60 ft. 40 ft.

7 beams @ 4 ft. – 0 in. = 28 ft.

Abutment
Pier

Wings Not
Shown

Ground or
Streambed

Superstructure

Overlay (50 psf)

29 ft. -2 in.

5 piles @ 6 ft. - 3 in. = 25 ft.

3 ft. - 6 in.

2 ft. - 6 in.

2 ft. - 6 in.

6 ft. - 0 in.

29 ft. -6 in.
2 ft. - 6 in.

7 piles @ 4 ft. - 2 in. = 25 ft.

40 ft. 60 ft. 40 ft.

7 beams @ 4 ft. – 0 in. = 28 ft.

Abutment
Pier

Wings Not
Shown

Ground or
Streambed

Superstructure

Overlay (50 psf)

 
Beams: IDOT Standard 27 in. x 48 in. PPC Deck Beams  

 

There are several aspects common to the class of bridges represented by the Example 4 

structure which makes them special or somewhat unique compared to the bridge types focused 
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on and discussed in Examples 1 to 3.  Non-continuity of the superstructure across the piers is 

probably the most important.  Lack of continuity causes the total base shear in the transverse 

direction to be distributed to the abutments and piers according to simple tributary span lengths 

as opposed to how it would be distributed using an indeterminate structural analysis required for 

bridges which have continuous superstructures.  The substructures/foundations and 

superstructures are also generally not as stiff as their counterpart bridge types commonly built in 

Illinois.  Essentially, the superstructures are relatively loosely connected collections of beams 

which probably do not act together as one when they deflect transversely under seismic 

loadings and all the substructure/foundation units are only supported by one row of piles.  The 

net effects of less stiff structural elements (particularly at the piers) in combination with 

superstructure discontinuity include longer transverse periods and fundamental mode shapes 

which can be somewhat unusual compared to other classes of bridges constructed in Illinois.  In 

addition, the calculation of an estimate of the period is quite simple and reasonably accurate if 

the stiffnesses of the piers are similar.  If pier stiffnesses are overly dissimilar, the estimate of 

the period and the transverse base shear computed for design will be conservative.  This 

recommended approach, which is described below, is adequate for design in most cases and, 

at the same time, produces the same relative distribution of design forces to the 

substructure/foundation units as much more sophisticated models.  It should be noted, however, 

that PPC deck beam bridges typically built on the State System have an overlay which would be 

considered to provide some degree continuity in the superstructure across the piers.  As such, 

the transverse analysis and design methods described in this example are typically not 

applicable these bridges. 

 

The connections between the superstructures and substructures are another aspect of simply 

supported PPC deck beam bridges which make them somewhat unique compared to other 

classes of bridges.  Historically, the beams have been anchored to the abutments and piers with 

what would be considered a strong connection (two 1. in. φ dowel rods) that is not fuse like 

according to the Department’s ERS strategy.  Both rods will be engaged during each cycle of a 

seismic event while only one anchor bolt would engage in most other bridge types, and the rods 

are only loaded in pure shear compared to anchor bolts which are typically loaded in combined 

shear and tension (which produces an inherently weaker fuse like connection).  It is probably 

imprudent, though, to require that anchorages for PPC deck beam bridges be designed to meet 

the same fuse level as their counterpart bridge types on the State and Local Systems.  This is 

because there are other loads and considerations associated with PPC deck beam bridges 
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which may override those for seismic loadings.  I.e., fuses which have “amperage levels” that 

are too low may produce undesirable and/or unintended consequences not related to seismic 

loadings.  As such, a value of 0.4 or Csm (the design acceleration coefficient), whichever is 

smaller, times the dead load reaction should be used as the lateral (shear) load for design of 

connection rods compared to the value of 0.2 required for other classes of bridges typically built 

in Illinois.  In addition, the smallest rod permitted shall be ¾ in. diameter. 

 

The methods for analysis and design of multi-span simply supported PPC deck beam bridges in 

the longitudinal direction are straightforward and very similar to those for other classes of 

bridges built in Illinois. 

 

It is common for simply supported PPC deck beam bridges to be located in rural areas of Illinois 

and/or areas where the ADT is low.  When this is the case, bridges may be designed for the 

flexible option according to Section 3.15.8 of the Bridge Manual.   The flexible option for design 

is presented for the bridge in this example.  The recommended analysis and design techniques 

are also as simple as is reasonably possible for the heightened design accelerations associated 

with the 1000 yr. return period earthquake. 

 

Discussions regarding how to meet the seismic requirements for single span PPC deck beam 

bridges are also interspersed at appropriate places throughout the example design presented 

below.  Generally, single span structures should meet requirements for connections of 

superstructures to abutments (Part 12), and minimum seat widths (Part 13). 

 

The example bridge is initially designed using HP piles.  An overview of the bridge designed 

using metal shell piles is presented afterward. 

 

1.  Determination of Bridge Period – Transverse Direction 
 

1.a.  Weight of Bridge for Seismic Calculations 

 

Refer to Example 1 Part 1.a. for discussion. 

 

 a. Beams  27 in. x 48 in. 

    Est. weight per foot 1 beam = 0.864 k/ft. 
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    No. of beams   = 7 

    Beam weight per foot  = 6.05 k/ft. 

 b. Overlay Non-cont. dead weight  = 0.050 ksf 

  Width of deck   = 28 ft. 

Overlay weight per foot = 1.4 k/ft. 

 c. Rail  2 Rails    = 0.120 k/ft. 

 d. Pier Cap Length    = 29.5 ft. 

    Width    = 3.5 ft. 

    Height     = 2.5 ft. 

    Pier cap weight 

    3.ft
k15.05.25.35.29 ×××  = 38.7 kips 

    Weight of 2 caps  = 77.4 kips 

 e. Pier Piles HP 12 x 53 weight per foot = 0.053 k/ft. 

    ≈½ length above ground = 4.5 ft. 

    (assumes 1.5 ft. embedment)  

    Total no. of piles  = 14 

    Total weight of piles  = 3.3 kips 

    (piles may be ignored at 

    designer’s discretion) 

 f. Abut. Cap Length    = 29.17 ft. 

    Width    = 2.5 ft. 

    Height     = 2.5 ft. 

    Abut. cap weight 

    3.ft
k15.05.25.217.29 ×××  = 27.3 kips 

    Weight of 2 caps  = 54.6 kips 

 g. Abut. Bckwall Length    = 29.17 ft. 

    Width    = 0.92 ft. 

    Height    = 2.67 ft. 

    Abut. backwall weight 

    3.ft
k15.067.292.017.29 ×××  = 10.7 kips 

    Weight of 2 backwalls  = 21.4 kips 

 h. Total Weight Length of Bridge  = 140 ft. 

    a. + b. + c.   = 7.57 k/ft. 

    or a. + b. + c.   = 1059.8 kips 
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    d. + e. + f. + g.   = 156.7 kips 

    Total Weight    = 1216.5 kips 

    (Use for design)  ≈ 1220 kips 

 

1.b.  Global Transverse Structural Model of the Bridge 

 

A straightforward finite element model of the bridge in this example can be constructed to 

determine the transverse period just as it is possible for most typical bridges built in Illinois.  

However, for most cases, a very simple approach to design and analysis is all that is 

absolutely necessary to calculate a reasonably accurate estimate of the transverse period 

(and the resulting subsequent distribution of the total base design shear to the 

substructure/foundation units).  A short discussion of finite element modeling techniques 

which may be used for global analysis of multi-span simply supported PPC deck beam 

bridges is provided below for the benefit of designers who choose this analytical path.  The 

discussion also serves to illustrate the logic behind the recommended simplified approach to 

transverse global analysis of simply supported multi-span PPC deck beam bridges. 

 

It should be noted that PPC deck beam bridges built on the State System have an overlay 

which would be considered to provide some degree continuity in the superstructure across 

the piers.  As such, the transverse analysis methods described in this example are typically 

not applicable these bridges.  

 

A variation of the global analysis model used for the bridge in Example 1 which is suitable 

as a model for the bridge in this example is shown below.  There are two primary differences 

between the analysis model of the Example 1 structure and the model employed for the 

current example bridge.  The ends of each individual span are now pinned or are “released” 

in a finite element formulation, and the superstructure moment of inertia is some “equivalent” 

value.  Engineering judgment is required to make a determination as to what is a reasonable 

moment of inertia to use for the superstructure given the loosely connected nature of the 

beams discussed above. 

 

The piers and abutments in the model are represented by one spring finite element each.  

The stiffness calculations shown below are similar to those for the abutments in the 

Example 1 bridge.  The superstructure is split up into 4 beam elements per span for a total 
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of 12.  A discussion on estimating the superstructure transverse moment of inertia (stiffness) 

is also provided below. 

 

kAbut kAbutkPier kPier

IEquivalent Transverse Superstructure

40 ft. = 480 in. 60 ft. = 720 in. 40 ft. = 480 in.

140 ft. = 1680 in.

kAbut kAbutkPier kPier

IEquivalent Transverse Superstructure

40 ft. = 480 in. 60 ft. = 720 in. 40 ft. = 480 in.

140 ft. = 1680 in.
 

 

 

1.c.  Transverse Pier Stiffness 

 

The stiffness calculation method for the pile bent pier is directly analogous to Example 1 

Part 1.d. except that the height of each pile (column in and above soil) is from the depth-of-

fixity to the bottom of the pier cap.  Note that the individual encasements of the piles are not 

considered structural.  The soil type is Class D. 

 

 Piles     HP 12 x 53 

 Number of Piles   7 

 Weak Axis Pile Moment of Inertia Ip = 127 in.4 

 (Typical Orientation for Illinois) 

 Steel Modulus of Elasticity  Es = 29000 ksi 

Pile Depth-of-Fixity (Fixed-Fixed) 7.3 ft. = 87.6 in. 

(from Geotechnical Analysis- 

see also Appendix C) 

Pile Height Ground to Cap Bottom 6.0 ft. = 72 in. 

Total Pile (Column) Height  159.6 in. 

 Stiffness of Pier    
h

IE12 piles) .no(
k 3

p

ps
Pier

×××
=  
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      in.
k

3Pier  1.76
6.159

1272900012 7k =
×××

=  

 

1.d.  Transverse Abutment Stiffness 

 

The stiffness calculation method for the abutment is identical to Example 1 Part 1.d.  The 

soil type is Class D. 

 

Piles     HP 10 x 42 

 Number of Piles   5 

 Weak Axis Pile Moment of Inertia Ip = 71.7 in.4 

 (Typical Orientation for Illinois) 

 Steel Modulus of Elasticity  Es = 29000 ksi 

Pile Depth-of-Fixity (Fixed-Fixed) 6.7 ft. = 80.4 in. 

(from Geotechnical Analysis- 

see also Appendix C)  

 Stiffness of Abutment    
h

IE12 piles) .no(
k 3

p

ps
Abut

×××
=  

      in.
k

3Abut  0.240
4.80

7.712900012 5k =
×××

=  

 

1.e.  Transverse Superstructure Stiffness 

 

The beams should only be considered as contributing to the transverse moment of inertia of 

superstructure.  However, the beams are only loosely tied together with several rods which 

are not post tensioned.  A “fully effective” transverse moment of inertia for the superstructure 

can be calculated as given below. 

 

 Area of 1 Beam  702 in.2 

 Moment of Inertia of Deck 
( ) 47222

n

1i

2
iBeam

.in 105.41442962482702

(in.) centroid from distance  d beams, of .no  n ,dA

×=×+×+×=

==∑
=  

 



Design Guides            3.15 - Seismic Design 

Page 3.15-74                 May 2008 

The equivalent moment of inertia may be estimated as about th
10

1  the fully effective for 

modeling purposes based upon engineering judgment or 4.5 x 106 in.4 and is used for the 

finite element model in the current example.  It should be noted that the calculated period is 

not overly sensitive to the value for superstructure moment of inertia actually employed in a 

global analysis model.  However, the value used should be “in the ballpark” of reality.  As a 

consequence, it is not recommended to use an overly stiff (or near rigid moment of inertia) 

or to simply assume the deck is a collection of beams which all act independently. 

 

1.f.  Finite Element and Simplified Transverse Period Determination 

 

Using the stiffness values calculated above and a typical lumped mass formulation at the 

superstructure nodes, a period (T) of 0.72 sec. was obtained from the finite element model.  

The lumped mass assignments are compatible with the Uniform Load Method.  The 

calculated shape of the first mode is as shown below. 

 

 

 
 

 

The mode shape appears somewhat unusual due to the lack of continuity in the 

superstructure and the fact that the piers are flexible in relation to the abutments (by a factor 

of over three).  The shape can be interpreted as a rough half sine wave which is comprised 

of 2 triangles and a rectangle.  If the piers in the example bridge reached stiffnesses which 

are around ⅔ that of the abutments, the shape of the first mode of vibration would start to 

approach the familiar smoothly curved half sine wave shown below (similar to Example 1), 

and the period (T) would decrease from 0.72 sec. to 0.50 sec.  It should be noted, however, 

that piers which are ⅔ as stiff as the abutments in the transverse direction would be 

considered out of the ordinary unless the piers were encased by a solid wall. 
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When either of the models above are subjected to an equal uniform load, both will have the 

same pier and abutment reactions due to the lack of continuity in the superstructure.  

Consequently, pier stiffnesses do not play a role in the distribution of total design base shear 

to substructure/foundation units of multi-span simply supported PPC deck beam bridges, but 

they do play a primary role in the actual magnitude of total base shear a structure is 

designed for.  Pier stiffnesses are closely correlated to the transverse period of these 

bridges, and the period is used in conjunction with the design response spectrum to 

determine the fraction of a bridges weight (acceleration coefficient) to employ as the total 

base design shear. 

 

Application of a 1 k/in. uniform load along the superstructure of the realistic finite element 

model (with flexible piers) results in a deflection at the center of the example bridge of 8.05 

in., and at the piers it results in a deflection of 7.88 in.  Using the Uniform Load Method 

(ULM), the equivalent stiffness of the bridge can be determined as, 

 

 in.
kft.

in.
.in

k

Max
Bridge 208.7 

in. 05.8
12 ft. 1401Lwk =

××
=

δ
×

=  

 

And the period (T) can be estimated as, 

 

Total Weight  1220 kips 

 Accel. of Gravity (g) 386.4 in./sec.2 

 Bridge Stiffness  208.7 k/in. 

 sec. 77.0
7.2084.386

12202
kg
W2T

Bridge

=
×

π=
×

π=  

 

As expected, the period calculated from the ULM is reasonably close to the more exacting 

calculation from the finite element model and is suitable for design purposes.  Alternatively, 
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the transverse period can also be calculated (estimated) using the Uniform Load Method 

assuming that the maximum deflection occurs at the piers as follows. 

 

 in.
kft.

in.
.in

k

Pier
Bridge 213.2 

in. 88.7
12 ft. 1401Lwk =

××
=

δ
×

=      (Eq. 1) 

 sec. 76.0
2.2134.386

12202
kg
W2T

Bridge

=
×

π=
×

π=      (Eq. 2) 

 

This alternative method also produces a reasonably accurate period which is suitable for 

design.  Since the reactions for multi-span simply supported PPC deck beam bridges can be 

calculated according to the tributary span lengths framing into substructure/foundation units, 

the pier deflections for a 1 k/in. uniform load applied to the bridge can be calculated as 

follows. 

 

 Pier Reactions  ( )( )( ) kips 600112ft. 60ft. 40RR .in
k

.ft
.in

2
1

2
1

2P1P =×+×==  (Eq. 3) 

 Pier Deflections in. 88.7
1.76
kips 600

.in
k2P1P ==δ=δ     (Eq. 4) 

 

As can be seen from the above derivation, sophisticated analytical techniques such as finite 

element modeling are not necessary to determine the period for most bridges which are in 

the same class as the bridge in the current example.  A summary of the steps required to 

determine the period for most multi-span simply supported PPC deck beam bridges, 

typically up to 5 spans, is given below (simplified method) along with some discussion on 

their potential limitations. 

 

1. Determine the transverse stiffnesses for each pier according to 1.c. 

 

2. Determine the transverse stiffnesses for each abutment according to 1.d. 

 

3. Compare the relative differences between the stiffnesses of the abutments and the 

piers.  The abutments should be around two to three times stiffer than the piers at a 

minimum, but this is not absolutely required. 
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4. Compare the relative differences between the stiffnesses of the piers.  If there are 

significant differences in stiffness from pier to pier, the period calculated from this 

method may be overly conservative, but it is still suitable for design purposes. 

 

5. Using the stiffest pier, calculate the reaction according the tributary span length 

method described by Eq. 3 with a uniform load of 1 k/in.   

 

6. Using the reaction calculated in Step 5, determine the deflection of the pier according 

the method described by Eq. 4. 

 

7. Using the method described by Eq. 1, calculate the equivalent stiffness of the bridge. 

 

8. Using the method describe by Eq. 2, calculate the period (T) of the bridge. 

 

2.  Determination of Bridge Period – Longitudinal Direction 
 

2.a.  Weight and Global Longitudinal Structural Model of the Bridge 
 
The methods required to determine the longitudinal period of multi-span simply supported 

PPC deck beam bridges are similar to those described in Example 1.  The mass of the 

bridge used for calculation of the longitudinal period is the same as that used for the 

transverse direction.  For bridges in the class of the current example structure, it is 

recommended that the longitudinal stiffnesses of all piers and abutments be used in the 

structural modeling and calculation of the period.  Even though each span in the 

superstructure is simply supported; the ends of the spans are in close proximity, and seismic 

loads will be transmitted through the superstructure before the “fixed” dowel bars fuse and 

afterward through friction due to adequate seat widths.  As such, the superstructure across 

the entire length of the bridge will essentially behave as one rigid body which transfers 

seismic loads to the substructures/foundations in a similar manner to bridges which have 

continuous superstructures.  In addition, due to the nature of the configuration of bridges in 

this class (i.e. typically flexible piers), it is beneficial (and required in some cases) to rely 

upon the structural resistance of the abutments to absorb seismic loads in order to produce 

designs that are feasible. 
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2.b.  Longitudinal Pier Stiffness 

 

The piles (columns) for individually encased pile bent piers should be assumed to deflect as 

cantilevers which deform from “fixed ends” (at the depth-of-fixity in soil) to the bottom of the 

cap beam.  The rigid body rotation of the cap should also be included in the stiffness 

determination.  The equations and derivation below determine the stiffness, and the figure 

provides an illustration for guidance for one pile in a bent. 

 

 Pile Stiffness w/o Cap  
cap of bottom tofixity -of                                           

-depth as taken height h  where; 
h

IE3
k p3

p

ps
p =

××
=

 

  

kp = 3 x Es x Ip / hp
3

hp

hCapCap Beam
k = ∞

Pile Stiffness 

Cap Beam
k = 

Seismic Load

kp = 3 x Es x Ip / hp
3

hp

hCapCap Beam
k = ∞

Pile Stiffness 

Cap Beam
k = 

Seismic Load

 
 

 Pile Stiffness w/ Cap 

   

  

 

 

 

 

 

 

 

 

 

 
 

TD
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ATpTD
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A
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2
p
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3
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:is then stiffness long. pile pier
final the and  is , ,deflection total The

h
:is , beam,  cap 

the of top the at pier the of deflection added The

IE2
hP

:is , pile,
 a of top the at rotation the P, load a For

IE3
hP

k
P   Pk

:is , pile, 
a of top the at deflection the P, load a For

δ=
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δ

××

×
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θ

××

×
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For a simple global stiffness analysis, the depth-of-fixity based upon deflection and not 

moment should be used for the fixed-pinned case.  Appendix C provides depths-of-fixity in 

terms of moment.  For the fixed-pinned case, the depths-of-fixity based upon deflection are 

about twice that for moment as discussed in Appendix C.  The stiffness of the piers for the 

current example is given below. 

 

Piles     HP 12 x 53 

 Number of Piles   7 

Stong Axis Pile Moment of Inertia Ip = 393 in.4 

 (Typical Orientation for Illinois) 

 Steel Modulus of Elasticity  Es = 29000 ksi 

Pile Depth-of-Fixity (Fixed-Pinned) 2 x 4.9 ft. = 9.8 ft. = 117.6 in. 

(from Geotechnical Analysis- 

see also Appendix C) 

Pile Height Ground to Cap Bottom 6.0 ft. = 72 in. 

Total Pile (Column) Height  189.6 in. 

 Stiffness of Piles w/o Cap   
h

IE3 piles) .no(
k 3

p

ps
P

×××
=  

      in.
k

3P  1.35
6.189

393290003 7k =
×××

=  

 Stiffness of Pier   

 w/ Cap     

  

  

 

 

 

 

 

 

  

 

 

in.
k

TD
 Pier Long

ATPTD

TD

TPCapA

A

2

TP

TP

TPTPP

TP

 4.28Pk

:is cap  withstiffness column The

0.035249P0.0067590P0.028490P  
:deflection total the ,

P0067590.0P00022530.0in. 30h
:cap of top the at deflection added the ,

P00022530.0
3932900027

6.189P
:P load a for piles of top at rotation ,

P028490.01.35
P   Pk

:P load a for piles of top at deflection 

=δ=

=+=δ+δ=δ

δ

=×=θ×=δ

δ

=
×××

×
=θ

θ

==δ⇒=δ×

δ
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2.c.  Longitudinal Abutment Stiffness 

 

The stiffness of the abutments is calculated in the same way as the piers with the exception 

that the piles are not exposed to air.  As such, the abutments have shorter effective heights 

and are stiffer than the piers. 

 

Piles     HP 10 x 42 

 Number of Piles   5 

Stong Axis Pile Moment of Inertia Ip = 210 in.4 

 (Typical Orientation for Illinois) 

 Steel Modulus of Elasticity  Es = 29000 ksi 

Pile Depth-of-Fixity (Fixed-Pinned) 2 x 4.4 ft. = 8.8 ft. = 105.6 in. 

(from Geotechnical Analysis- 

see also Appendix C) 

 Stiffness of Piles w/o Cap   
h

IE3 piles) .no(
k 3

p

ps
A

×××
=  

      in.
k

3A  6.77
6.105

210290003 5k =
×××

=  

 Stiffness of Abutment 

 w/ Cap     

  

  

  

  

  

 

 

 

 

 

 

  

 

in.
k

TD
  AbutLong

ATATD

TD

TACapA

A

2

TA

TA

TATAA

TA

 4.54Pk

:is cap  withstiffness column The

0.018380P0.0054933P0.012887P  
:deflection total the ,

P0054933.0P00018311.0in. 30h
:cap of top the at deflection added the ,

P00018311.0
2102900025

6.105P
:P load a for piles of top at rotation ,

P012887.06.77
P   Pk

:P load a for piles of top at deflection 

=δ=

=+=δ+δ=δ

δ

=×=θ×=δ

δ

=
×××

×
=θ

θ

==δ⇒=δ×

δ
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2.d.  Uniform Load Method Longitudinal Period Determination 

 

The Uniform Load Method is used in the current example to straightforwardly calculate the 

longitudinal bridge period with the equation given below. 

 

bridge of massM where;
k2k2

M2T
Abut LongPier Long

=
×+×

π=  

 

 Mass of Bridge .in
.seck 21573.3

4.386
1220

g
Bridge of WeightM −===  

 Period    sec. 87.0
4.5424.282

1573.32T =
×+×

π=  

 

3.  Determination of Base Shears – 1000 Year Design Earthquake Return Period 

 
3.a.  Design Response Spectrum (LRFD) 

 

Reference Appendix 3.15.A of the Bridge Manual and Section 3 of the LRFD Code for more 

information on the formulation of the 1000 yr. Design Response Spectrum. 

 

The bridge in this example is geographically located at the upper acceleration boundary of 

Zone 2 with Class D Soil (which is common in Southern Illinois).  The map shown below is 

repeated from the Bridge Manual.  It illustrates (approximately) the seismicity of Illinois for 

Class D soil.  An examination of the map reveals that the bridge in the current example is 

being designed for moderate to high seismicity.  This is also an area of the State for which 

PPC deck beam bridges are commonly constructed on the Local System. 
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The following are the seismic design data for the current example bridge. 

 

Ss (Short Period Acceleration)  0.50g (See LRFD Code Maps Article 3.10.2.1) 

S1 (1-Sec. Period Acceleration)  0.13g (See LRFD Code Maps Article 3.10.2.1)  

Soil Type     Class D (In Upper 100 ft. of Soil Profile) 

Fa (Short Period Soil Coef.)  1.40 (BM Table 3.15.A.2.3-1) 

Fv (1-sec. Period Soil Coef.)  2.28 (BM Table 3.15.A.2.3-2) 

SDS      g70.05.04.1SF sa =×=  

SD1      g30.013.028.2SF 1v =×=  

Seismic Performance Zone  2 ( )1-3.15.2 Table BM   30.0SF15.0 1v ≤<  

Importance Category   Other (Flexible Option according to BM Section  

3.15.8) 

 

Definitions and a graphical representation of the design response spectrum (with 

approximate acceleration at zero sec. period) are given below. 
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Ts    = 429.07.0
3.0 =  sec. 

T0    = 086.0429.02.0 =×  sec. 

Less than T0, Sa  = 28.0T88.4S4.0T
T

S
6.0 DS

0

DS +=+  
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Greater than Ts, Sa = T
30.0  

(Where T = Tm, and Sa = Csm in the LRFD Code) 

 

Transverse Direction: 

 

Sa (Csm in the LRFD Code) = 76.0
30.0 = 0.39 (T = 0.76 > Ts = 0.429 sec.) 

 

Longitudinal Direction: 

 

Sa (Csm in the LRFD Code) = 87.0
30.0 = 0.34 (T = 0.87 > Ts = 0.429 sec.) 

 

Values beyond the “plateau” (analogous to 2.5A in the LFD Code) are not unexpected in the 

transverse and longitudinal directions for many typical multi-span simply supported PPC 

deck beam bridges. 

 

3.b.  Transverse Base Shear 
 

Total Base Shear    = kips 8.47512200.39  Bridge of .WtSa =×=×  

 

Or      in.
k 283.0in.1680

kips 475.8 =  

 

As discussed above, the transverse seismic base shear is distributed to the piers and 

abutments according to the simple tributary span lengths which frame into these 

substructure/foundation units. 

 

VBase Shear P (T)   = ( ) kips 8.169in 720 in. 480283.0 2
1

2
1

.in
k =×+×  

VBase Shear A (T)   = ( ) kips 9.67in. 480283.0 2
1

.in
k =×  

 

3.c.  Longitudinal Base Shear 
 

Total Base Shear    = kips 8.41412200.34  Bridge of .WtSa =×=×  
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For this example, the longitudinal seismic base shear is distributed to the piers and 

abutments according to the relative stiffnesses of these units. 

 

VBase Shear P (L)   = ( ) kips 8.414
4.5424.282

4.28
.in

k

.in
k

×
×+×

= 71.1 kips 

 

VBase Shear A (L)   = ( ) kips 8.414
4.5424.282

4.54
.in

k

.in
k

×
×+×

= 136.3 kips 

 

4.  Frame Analysis and Pile (Columnar) Seismic Forces for Pile Bents 
 

4.a.  Pier Forces – Dead Load 

 

Dead Load of Superstructure 

(Use Wt. from Previous Calculations) = 1220 kips 

Bridge Length    = 140 ft. 

Dead Load Per ft. of Bridge  = .ft
k714.8140

1220 =  

Dead Load Per Pier (Use Statics) = ⎟
⎠
⎞

⎜
⎝
⎛ +× CenterSpanOuterSpan L

2
1L

2
1714.8  

      = kips 7.43560
2
140

2
1714.8 =⎟

⎠
⎞

⎜
⎝
⎛ ×+××  

No. of Piles (Columns) Per Pier  = 7 

Dead Load Per Pile   = kips 2.627
7.435 =  

 

Added Dead Load for Bot. Half of 1 Col. 

Not Considered in Pt. 1.a. Sub-Pt. e. = Neglect as not significant 

 

4.b.  Pier Forces – Transverse Overturning 

 

The seismic base shear at each pier theoretically acts through the centroid of the 

superstructure.  It is acceptable to assume/approximate that the centroid acts at the top of 

the beams.  From statics, shown below, an “overturning moment” produces axial 
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compression and tension across the bent assuming a connection which resists uplift 

between the superstructure and the substructures.  The seismic base shear also produces 

“frame action” forces in the piles (columns) of the bent and acts at the bottom of the cap (the 

“eccentricity” or “arm” of the base shear is taken into account through consideration of the 

overturning moment)  Frame action force analysis is given in the following section.  

Appendix A contains overturning moment solutions for bents with 2 to 13 columns.  In 

reality, for multi-span simply supported PPC deck beam structures, the axial compressive 

forces predicted from the simple overturning moment solutions are probably more accurate 

than the predicted tensile forces due to the nature of the connection between the 

superstructures and substructures for this class of bridges.  However, the solutions give 

results which are suitable for design purposes.  

 

 Sp

d

PST
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0.67PST
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0.67PST

( )
( )
( )

d
M107.0P

dP33.02        
d2P67.02        

d3P2M
armSM

ST

ST

ST

ST

p

=∴

×

+×

+×=

×=
0.33PST0.33PST

0

d d d d d

Sp

d

PST
arm

0.67PST

PST

0.67PST

( )
( )
( )

d
M107.0P

dP33.02        
d2P67.02        

d3P2M
armSM

ST

ST

ST

ST

p

=∴

×

+×

+×=

×=
0.33PST0.33PST

0

d d d d d

 
 

Sp (Base Shear at Pier)   = 169.8 kips 

arm (Base Shear Eccentricity)  

Cap Height + Beam Height  = ft. 75.412/275.2 =+  

d (Center-to-Center Pile Distance) = 4 ft. – 2 in. = 4.17 ft. 

M (Overturning Moment)   = ft.-k  6.80675.48.169 =×   

PST (Maximum Axial Columnar Force) = kips  7.2017.4
6.806107.0 =×  
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4.c.  Pier Forces – Transverse Frame Action 

 

Taking account of the overturning moment “transfers” the seismic base shear at the pier to 

the tops of the piles (columns).  This shear produces moments, shears and axial forces in 

each pile of the bent through “frame action.”  Free body diagram solutions for these seismic 

forces are shown below.  The determination of moment and shear in each column is more 

straightforward than for axial force.  The simple solutions for moment in the piles are very 

accurate while conservative solutions for axial force due frame action are emphasized for 

the critical outside piles.  Appendix B contains frame action columnar axial force solutions 

for bents with 2 to 6 or more columns. 

 

 

2
hVM ST

ST
×=

VST

VST

MST

MST

d

VST VST VST

h

7
SV P

ST =

VSTVST VSTVST VST

2
hVM ST

ST
×=

VST

VST

MST

MST

d

VST VST VST

h

7
SV P

ST =

VSTVST VSTVST VST

 
Sp (Base Shear at Pier)   = 169.8 kips 

Column Height (Fixity to Cap Bot.) = 13.3 ft. 

VST (Shear Per Pile)   = kips  3.247
8.169 =  

MST (Moment Per Pile)   = ft.-k  6.1612
3.133.24 =×  
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MST (Moment Per Pile)   = 161.6 k-ft. 

d (Center-to-Center Pile Distance) = 4.17 ft. 

PSB (Maximum Axial Pile Force)  = kips  7.6417.4
6.16167.1 =×  

 

4.d.  Pier Forces – Longitudinal Cantilever 

 

Only simple cantilever statics is required to determine the seismic shear and moment in the 

longitudinal direction. 

 

SL (Base Shear at Pier)   = 71.1 kips 

Column Height (Fixity Based on 

Moment to Cap Bot.) = 4.9 ft. + 6.0 ft. = 10.9 ft. 

Cap Beam Height     = 2.5 ft. 

VSL (Shear Per Pile)   = kips  2.107
1.71 =  

MColBot(SLB) (Moment Per Pile)  = ( ) ft.-k  7.1365.29.102.10 =+×  
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5.  Frame Analysis and Pile (Columnar) Seismic Forces for Abutments 
 

The analysis of the abutments for seismic forces is directly analogous to that of the piers. 

 

5.a.  Abutment Forces – Dead Load 

 

Dead Load of Superstructure 

(Use Wt. from Previous Calculations) = 1220 kips 

Bridge Length    = 140 ft. 

Dead Load Per ft. of Bridge  = .ft
k714.8140

1220 =  

Dead Load Per Abut. (Use Statics) = ⎟
⎠
⎞

⎜
⎝
⎛× OuterSpanL

2
1714.8  

      = kips 3.17440
2
1714.8 =⎟

⎠
⎞

⎜
⎝
⎛ ××  

No. of Piles (Columns) Per Abut.  = 5 

Dead Load Per Pile   = kips 9.345
3.174 =  

 

5.b.  Abutment Forces – Transverse Overturning 
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Sp (Base Shear at Abutment)  = 67.9 kips 

arm (Base Shear Eccentricity)  

Cap Height + Beam Height  = ft. 75.412/275.2 =+  

d (Center-to-Center Pile Distance) = 6 ft. – 3 in. = 6.25 ft. 

M (Overturning Moment)   = ft.-k  5.32275.49.67 =×   

PST (Maximum Axial Columnar Force) = kips 10.3 25.6
5.322

5
1

=×  

 

5.c.  Abutment Forces – Transverse Frame Action 

 

d d 2
hVM ST

ST
×=

VST VST VST

VST

VST

MST

MST

h

5
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ST =

d
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5
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d
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Sp (Base Shear at Abutment)  = 67.9 kips 

Column Height (Fixity to Cap Bot.) = 6.7 ft. 

VST (Shear Per Pile)   = kips  6.135
9.67 =  

MST (Moment Per Pile)   = ft.-k  6.452
7.66.13 =×  
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MST (Moment Per Pile)   = 45.6 k-ft. 

d (Center-to-Center Pile Distance) = 6.25 ft. 

PSB (Maximum Axial Pile Force)  = kips  2.1225.6
6.4567.1 =×  

 

5.d.  Abutment Forces – Longitudinal Cantilever 

 

SL (Base Shear at Abutment)  = 136.3 kips 

Column Height (Fixity Based on 

Moment to Cap Bot.) = 4.4 ft. 

Cap Beam Height     = 2.5 ft. 

VSL (Shear Per Pile)   = kips  3.275
3.136 =  

MColBot(SLB) (Moment Per Pile)  = ( ) ft.-k  4.1885.24.43.27 =+×  
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6.  Seismic Design Forces for Pile Bent Including R-Factor, P-Δ, and Combination of 

     Orthogonal Forces 
 

6.a.  R-Factor 

 

R-Factors should only be used to reduce the moments calculated from the base shears of 

an “elastic” analysis as was conducted above.  As recommended in the Bridge Manual 

(Section 3.15.8) an R-Factor of 3.5 will be used for the pile bents in this example.  This 

coincides with classifying the bridge as “Other” according to the LRFD Code. 

 

6.b.  P-Δ 

 

See Example 1 Part 6.b. for discussion on this topic.  For the current example bridge, a 5% 

amplification of bending moments will be used to account for P-Δ effects. 

 

6.c.  Summary and Combination of Orthogonal Column Forces Used for Design 

 

The forces on the two exterior piles (columns) in the example bridge are focused on for 

design because they experience the most extreme earthquake forces.  The pier piles should 

be designed for the possibility of earthquake accelerations which can be in opposite 

transverse directions and opposite longitudinal directions.  They are also required to be 

designed for the cases “mostly longitudinal and some transverse accelerations” 

(Longitudinal Dominant – Load Case 1) and “some longitudinal and mostly transverse 

accelerations” (Transverse Dominant – Load Case 2). 

 

Since the bridge in this example is not skewed, the combination of orthogonal forces used 

for design is straightforward.  More complex cases with skew and non-round columns are 

considered in Examples 2 and 3 of this design guide.  The equations below present the 

basic method for combination of orthogonal forces. 

 

Load Case 1 (Longitudinal Dominant)  Load Case 2 (Transverse Dominant) 

 
T
z

L
z

D
z V3.0V0.1V +=     T

z
L
z

D
z V0.1V3.0V +=  
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T
y

L
y

D
y V3.0V0.1V +=     T

y
L
y

D
y V0.1V3.0V +=  

T
z

L
z

D
z M3.0M0.1M +=     T

z
L
z

D
z M0.1M3.0M +=  

T
y

L
y

D
y M3.0M0.1M +=     T

y
L
y

D
y M0.1M3.0M +=  

TLD P3.0P0.1P +=     TLD P0.1P3.0P +=  

 

For the bridge in this example the Longitudinal- and z-axes, and Transverse- and y-axes 

coincide as shown below. 

 

40 ft. 60 ft. 40 ft.

L, z

T, y

L, z

T, y

40 ft. 60 ft. 40 ft.

L, z

T, y

L, z

T, y

 
 

Shown below are the Load Case 1 and Load Case 2 forces used for seismic design with R-

Factor (3.5), P-Δ amplification (1.05), and axial dead load (62.2 kips) effects all considered. 

 

Load Case 1 – Longitudinal Dominant (per pile):  

 

kips  2.102.100.103.0V0.1V3.0V0.1V SL
T
z

L
z

D
z ==+=+=  

kips   3.73.243.0V3.000.1V3.0V0.1V ST
T
y

L
y

D
y ==+=+=  

ft.-k  5.145.3
6.16105.13.05.3

M05.13.000.1M3.0M0.1M STT
z

L
z

D
z =×=×+=+=  

ft.-k  0.415.3
7.13605.10.103.05.3

M05.10.1M3.0M0.1M SLBT
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D
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kips 8.87 and 6.36                                                                                                                

7.647.203.02.62PP3.000.1PPP3.0P0.1P SBSTDead
DTLD

=

=+±=+±+=→+=
 

Note that the Department recommends a load factor of 1.0 be used for dead loads for 

LRFD. 

 

Load Case 2 – Transverse Dominant (per pile): 
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−=
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7.  Seismic Design Forces for Abutment Including R-Factor, P-Δ, and Combination of 

     Orthogonal Forces 
 

7.a.  R-Factor 

 

As recommended in the Bridge Manual (Section 3.15.8) an R-Factor of 1.5 will be used for 

the piles supporting the stub abutments in this example.  This coincides with classifying the 

bridge as “Other” according to the LRFD Code. 

 

7.b.  P-Δ 

 

P-Δ effects should be ignored for piles at abutments. 

 

7.c.  Summary and Combination of Orthogonal Column Forces Used for Design 

 

The method for combining of orthogonal forces for the abutments is similar to that for the 

piers.  Shown below are the Load Case 1 and Load Case 2 forces used for seismic design 
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with R-Factor (1.5), P-Δ amplification (1.00), and axial dead load (34.9 kips) effects all 

considered. 

 

Load Case 1 – Longitudinal Dominant (per pile):  
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Note that the Department recommends a load factor of 1.0 be used for dead loads for 

LRFD. 

 

Load Case 2 – Transverse Dominant (per pile):  
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8.  Combined Axial Force and Bi-Axial Bending Structural Capacity Check for Piles in    

     Bents 

 
The piles should be checked for structural capacity using Articles 6.8 (Tension Members) or 

Article 6.9 (Compression Members) of the LRFD Code for combined axial force and bi-axial 
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bending.  Note that all φ factors according to LRFD Article 6.5.5 shall be taken as 1.0 for 

extreme events. 

 

Geotechnical considerations for the design of piles to resist seismic loadings are provided in 

Sections 3.10 and 3.15 of the Bridge Manual as well as Design Guide 3.10.1.  Guidance on 

liquefaction, lateral pile resistance in soil, pullout from the soil, etc. are among the 

considerations addressed. 

 

8.a.  Load Case 1 – Longitudinal Dominant 

 

Both axial forces for Load Case 1 are compressive. LRFD Article 6.9.2.2 contains the 

provisions for checking axial compression in combination with bi-axial bending and shall 

satisfy, 
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Where: 

 Mux = design seismic moment about y-axis of bent (k-ft. or k-in.) 

 Muy = design seismic moment about z-axis of bent (k-ft. or k-in.) 

 Mrx = FySx, yield strength times section modulus about strong axis of  

pile (k-ft. or k-in.) 

 Mry = FySy, yield strength times section modulus about weak axis of  

pile (k-ft. or k-in.) 

Pu = design seismic compressive force (kips) 

 Pr = allowable compressive resistance according to LRFD Article  

6.9.2.1 (kips) 
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Pr = φPn       (Eq. 6.9.2.1-1) 

   

Where: 

For λ ≤ 2.25, 

Pn = 0.66λFyAs      (Eq. 6.9.4.1-1) 

    

 

Otherwise, 

Pn = 
λ

sy AF88.0
     (Eq. 6.9.4.1-2) 

    

In which: 

λ = 
E
F

r
K y

2

s
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π
l       (Eq. 6.9.4.1-3) 

Where: 

 φ = 1.0 

As =  gross area of section (in.2) 

Fy = yield strength of steel (ksi) 

E = modulus of elasticity of steel (ksi) 

K = effective length factor 

l  = unbraced length (in.) 

rs = radius of gyration about plane of buckling (in.) 

 

For Load Case 1 (HP 12 x 53), 

 Mux = D
yM     = 41.0 k-ft. 

 Muy = D
zM     = 14.5 k-ft. 

Mrx = FySx = in. 12
ft. 13in. 8.66ksi 50 ××  = 278.3 k-ft. 

Mry = FySy = in. 12
ft. 13in. 1.21ksi 50 ××  = 87.9 k-ft. 

 Pu = PD (max.)    = 87.8 kips 

 

Pr = φPn = 1.0Pn 
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 λ = 
E
F

r
K y

2

s
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⎞
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⎝

⎛
π
l  

 K = 1.5 (≈ avg. about weak and strong axis pile) 

 l  = 159.6 in. (about weak axis, would be 130.8 in. about strong axis taking  

depth-of-fixity based upon moment) 

 Fy = 50 ksi 

 E = 29000 ksi 

 rs = 2.86 in. (about weak axis) 

As = 15.5 in.2 

 λ = 
29000

50
86.2

6.1595.1 2

⎟
⎠
⎞

⎜
⎝
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π×
× = 1.22 

λ ≤ 2.25,  

∴Pr = (1.0)0.66λFyAs = (1.0) 5.155066.0 22.1 ×× = 466.8 kips 

  

 And, 
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8.b.  Load Case 2 – Transverse Dominant 

 

One design axial force for Load Case 2 is compressive and one is tensile.  However, the 

tensile load is much smaller that the compressive force in absolute magnitude, and the 

allowable tensile force in pure tension is generally greater than for compression.  The 

provisions for axial tension combined with bi-axial bending are similar to those for axial 

compression.  Therefore, only LRFD Article 6.9.2.2 need be checked for Load Case 2. 

 

For Load Case 2 (HP 12 x 53), 

 Mux = D
yM     = 12.3 k-ft. 

 Muy = D
zM     = 48.5 k-ft. 

Mrx = FySx = in. 12
ft. 13in. 8.66ksi 50 ××  = 278.3 k-ft. 
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Mry = FySy = in. 12
ft. 13in. 1.21ksi 50 ××  = 87.9 k-ft. 

 Pu = PD (max.)    = 147.6 kips 

 

Pr = φPn = 1.0Pn 

 λ = 
E
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r
K y
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l  

 K = 1.5 (≈ avg. about weak and strong axis pile) 

 l  = 159.6 in. (about weak axis, would be 130.8 in. about strong axis taking  

depth-of-fixity based upon moment) 

 Fy = 50 ksi 

 E = 29000 ksi 

 rs = 2.86 in. (about weak axis) 

As = 15.5 in.2 

 λ = 
29000

50
86.2

6.1595.1 2

⎟
⎠
⎞

⎜
⎝
⎛

π×
× = 1.22 

λ ≤ 2.25,  

∴Pr = (1.0)0.66λFyAs = (1.0) 5.155066.0 22.1 ×× = 466.8 kips 

  

 And, 
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9.  Combined Axial Force and Bi-Axial Bending Structural Capacity Check for Piles in  

     Abutments 

 
The piles in the abutments should be checked with the same LRFD provisions as the piles in the 

piers. 
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9.a.  Load Case 1 – Longitudinal Dominant 

 

For Load Case 1 (HP 10 x 42), 

 Mux = D
yM     = 125.6 k-ft. 

 Muy = D
zM     = 9.1 k-ft. 

Mrx = FySx = in. 12
ft. 13in. 4.43ksi 50 ××  = 180.8 k-ft. 

Mry = FySy = in. 12
ft. 13in. 2.14ksi 50 ××  = 59.2 k-ft. 

 Pu = PD (max.)    = 41.7 kips 

 

Pr = φPn = 1.0Pn 

 λ = 
E
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r
K y
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l  

 K = 1.5 (≈ avg. about weak and strong axis pile) 

 l  = 80.4 in. (about weak axis, would be 52.8 in. about strong taking depth-of- 

fixity based upon moment) 

 Fy = 50 ksi 

 E = 29000 ksi 

 rs = 2.41 in. (about weak axis) 

As = 12.4 in.2 

 λ = 
29000

50
41.2

4.805.1 2

⎟
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⎜
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λ ≤ 2.25,  

∴Pr = (1.0)0.66λFyAs = (1.0) 4.125066.0 44.0 ×× = 516.4 kips 

  

 And, 
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9.b.  Load Case 2 – Transverse Dominant 

 

For Load Case 2 (HP 10 x 42), 

 Mux = D
yM     = 37.7 k-ft. 

 Muy = D
zM     = 30.4 k-ft. 

Mrx = FySx = in. 12
ft. 13in. 4.43ksi 50 ××  = 180.8 k-ft. 

Mry = FySy = in. 12
ft. 13in. 2.14ksi 50 ××  = 59.2 k-ft. 

 Pu = PD (max.)    = 57.4 kips 

 

Pr = φPn = 1.0Pn 

 λ = 
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r
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 K = 1.5 (≈ avg. about weak and strong axis pile) 

 l  = 80.4 in. (about weak axis, would be 52.8 in. about strong taking depth-of- 

fixity based upon moment) 

 Fy = 50 ksi 

 E = 29000 ksi 

 rs = 2.41 in. (about weak axis) 

As = 12.4 in.2 

 λ = 
29000

50
41.2

4.805.1 2

⎟
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λ ≤ 2.25,  

∴Pr = (1.0)0.66λFyAs = (1.0) 4.125066.0 44.0 ×× = 516.4 kips 
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10.  Discussion of Flexible Versus Standard Design Options 

 

The flexible option for seismic design permits the designer to choose piles (number of, and 

sizes) which may not be significantly increased over non-seismic design considerations.  This is 

true for the bridge in the current example.  Overstrength plastic behavior is relied upon in the 

substructures and foundations more heavily than for most bridges on the State System through 

increased R-factors (and smaller design moments).  The chances for a span or spans to be lost 

during a significant seismic event are probably not significantly increased when a bridge is 

designed according to the flexible option.  However, the amount of allowable (and probably 

costly) damage to a bridge is increased. 

 

If the piles in the current example were checked using design moments computed from the 

higher R-factors recommended for most bridges on the State System, they would have been 

found not adequate.  At the piers, the combined axial force and bi-axial bending ratio would be 

about 1.24 and at the abutments it would be about 1.31.  Both of these values are significantly 

greater than 1.0.  As a consequence, larger size piles, at a minimum, would be required if the 

example bridge was to be built on the State System. 

 

It should be noted, however, that there can be what could be termed a “double jeopardy” 

associated with increasing piles sizes (and/or numbers of piles).  This effect is illustrated well in 

the design calculations for the bridge in the current example.  If the piles sizes were increased, 

the substructures and foundations (i.e. the bridge in critical elements) would also become stiffer.  

This in turn would cause the longitudinal and transverse periods to become shorter.  Since the 

periods of the more flexible structure are well past the upper plateau of the design response 

spectrum, a less flexible structure will cause the total design base shears in both directions 

(longitudinal and transverse) to increase from the levels calculated above.  At some point, the 

decreased periods and resulting increased seismic design loads will converge with the required 

increases in pile sizes and/or numbers.  In some cases, this may not happen until one or both of 

the bridge periods (probably transverse) reaches the plateau (or flat part) of the design 

response spectrum. 
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11.  Pile Shear Structural Capacity Check, and Pile Connection Details, and Cap  

      Reinforcement Details 

 
Shear capacity of the piles at the piers and abutments should be checked, but is generally not a 

concern in steel HP piles.  For most bridges in Illinois, a pile embedment of 2 ft. – 0 in. is 

optimally specified for piles into pier and abutment caps such that plastic moments in the piles 

can be developed for accelerations which approach the design seismic event.  However, 

primarily due to cost concerns, it is desirable to limit cap depths to about 2 ft. – 6 in. for PPC 

deck beam bridges.  When cap depths are limited, special anchorage details should be provided 

at the ends of piles which effectively extends the embedment depth.  At pier caps, some 

nominal added confinement reinforcement should also be provided to help ensure that plastic 

moments in the piles will develop. 

 

11.a.  Shear Capacity Check of HP Piles 

 

LRFD Article 6.10.9 should be used to check the shear capacity of the piles at the piers and 

abutments.  The following LRFD Code equations apply when determining shear capacity for 

seismic loadings.  Basic shear capacity is calculated as, 

 

 Vu ≤ φVn        (Eq. 6.10.9.1-1) 

 

Vn is determined from: 

 

 Vn = CVp        (Eq. 6.10.9.2-1) 

 

In which: 

 

 Vp = 0.58FyDt        (Eq. 6.10.9.2-2) 

 

Where: 

 φ = 1.0 

  D = depth of member or width of flanges (in.) 

  t = thickness of web or twice the thickness of the flanges (in.) 

  Fy = yield strength of the pile (ksi) 
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  C = ratio of shear buckling strength to shear yield strength taken as 1  

for HP piles subjected to extreme event loadings 

 

Capacity of HP 10 x 42 piles for shear: 

 

 Longitudinal Direction (Strong Axis), 

φVn = (1.0)(1.0)0.58FyDt 

D = 9.7 in. 

t = 0.415 in 

Fy = 50 ksi 

φVn = (1.0)(1.0)0.58FyDt = 0.58(50)(9.7)0.415) = 116.7 kips 

  

 Transverse Direction (Weak Axis), 

φVn = (1.0)(1.0)0.58FyDt 

D = 10.08 in. 

t = 0.84 in 

Fy = 50 ksi 

φVn = (1.0)(1.0)0.58FyDt = 0.58(50)(10.08)0.84) = 245.5 kips 

 

Design Shears for 10 x 42: 

 

Vu (Load Case 1 – Longitudinal Dominant)  
D
zV  = 27.3 kips 

D
yV  = 4.1 kips 

 

Vu (Load Case 2 – Transverse Dominant)  
D
zV  = 8.2 kips 

D
yV  = 13.6 kips 

 

For 10 x 42, Vu << φVn   OK and HP 12 x 53 OK by inspection. 
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11.b.  Anchorage Details at Piers and Abutments for HP Piles 

 

The detail shown below or one of the other two options shown in Figure 3.15.5.5-1 of the 

Bridge Manual may be used at the ends of piles which are only embedded 1 ft. – 0 in. into 

pier and abutment caps.  Using 4 - #5 bars (Fy = 60 ksi) in which the tops of the 180° hooks 

extend to 1 ft. – 0 in. above the end of the pile provides about 74 kips of nominal tensile 

capacity.  This is more that adequate to resist pile pullout and also provides equivalent 

added embedment.   

 

 
 

 

 

11.c.  Added Pier Cap Confinement Reinforcement 

 

In addition to the normal closed stirrups (“s” bars), the longitudinal reinforcement (“p” bars 

along cap transverse to bridge) and the end reinforcement (“u” bars); cross ties (#4’s) which 

have 180° hooks at each end should be provided on the middle “p” bars at 2 ft. – 0 in. cts. 

minimum for added confinement.  A simple sketch showing these bars is shown below. 
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#4 Cross Tie

Middle “p” Bar

Pier Cap

#4 Cross Tie

Middle “p” Bar

Pier Cap  
 

12.  Dowel Bar Connection of Beams to Pier and Abutment Caps 

 
As discussed in the introduction to the current example bridge, the connection between PPC 

deck beams and substructures has historically been strong or not fuse like which is not optimal 

according to the philosophy of IDOT’s ERS strategy.  Two 1 in. φ dowel rods have traditionally 

been used for the connection.  It is desirable to make these connections somewhat weaker 

(more fuse like) without potentially compromising the integrity of these connections for other 

structural and service conditions these bridges may experience during their lifetime.  As such, 

the two dowel rods at each end of a beam (or an equivalent) should be designed to resist a 

shear force equal to the lesser of 0.4 or Csm (the design acceleration coefficient) times the 

tributary dead weight of beams plus overlay.  For other classes of bridges in Illinois, the fraction 

of dead weight used for this design load is 0.2.  In addition, connection rods should not be less 

than ¾ in. in diameter with a minimum yield strength of 36 ksi (tensile strength of 58 ksi).  Note 

that these provisions also apply for the design of the connections in single span PPC deck 

beam bridges. 

 

The shear strength of connection rods (or bars) should be calculated according to the equation 

below with a φ factor of 1.0.  The same equation for shear strength is used in Section 3.7.3 of 

the Bridge Manual but with a φ factor of 0.75.  It is from LRFD Article 6.13.2.12. 

 

φRn = φ0.48AbFu       (Eq. 6.13.2.12-1) 
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Where: 

 φ = 1.0 

 Ab = area of dowel rod (in.2) 

 Fu = tensile strength of rod (ksi) 

 

Maximum Design Shear Force for Anchor Rods: 

 

Use 0.39 (< 0.4) times tributary dead weight flowing into ends of 60 ft. span beams as 

the governing design shear. 

 

( )( )
rods2

ksf 0.05 ft. 4 k/ft. 864.0ft. 6039.0R 2
1

u
×+×

×= = 6.2 kips/rod 

 

Allowable Shear per Rod: 

 

 Compute strengths of ¾ in. φ Grade 36 and Grade 55 rods. 

 

  φRn = φ0.48AbFu 

  φ = 1.0 

Ab = 0.44 in.2 

  Fu = 58 and 75 ksi 

  φRn = φ0.48AbFu = (1.0)(0.48)(0.44)(58) = 12.2 kips (Grade 36) 

  φRn = φ0.48AbFu = (1.0)(0.48)(0.44)(75) = 15.8 kips (Grade 55) 

 

Therefore, ¾ in. φ dowels of Grade 36 or Grade 55 are adequate (#6 rebar, Fy = 60 ksi, may 

also be substituted). 

 

13.  Minimum Support Length (Seat Width) Requirements at Piers and Abutments 

 
At a minimum, adequate seat widths shall be provided in the longitudinal direction only at piers 

and abutments according to LRFD Article 4.7.4.4.  The requirements of the LRFD Code are 

generally not as stringent as those detailed in Section 3.15.4.2 of the Bridge Manual, and are 
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permitted for single and multi-span simply supported PPC deck beam bridges designed 

according to the flexible option outlined in Section 3.15.8 of the Bridge Manual. 

 

For bridges in Zone 2, the minimum required seat width at piers and abutments shall be 

calculated as 150% of the following equation from the LRFD Code. 

 

 ( )( ) in.  S000125.01H08.0L02.08N 2+++=     (Eq. 4.7.4.4-1) 

 

 Where: 

  L = total length of bridge for single or multi-span PPC deck beam  

bridges (ft.) 

H = average height of piers for multi-span PPC deck beam  

bridges and taken a zero (0.0) for single span bridges (ft.) 

  S = bridge skew (°) 

 

L is taken as the total length of the bridge due to the close proximity of the beam ends at piers 

(i.e. they will easily push against each other if the anchor rods fuse).  Since PPC deck beams 

are already “wide” (3 ft. or 4 ft.), the transverse seat width requirements have been waived for 

these bridges (but they are required, over and above that specified by the LRFD Code, for most 

structures on the State System as outlined in Section 3.15.4.2 of the Bridge Manaul). 

 

Minimum Required Support Length: 

 

 ( )( ) in.  S000125.01H08.0L02.08N 2+++=  

 L = 140 ft. 

 H = 10 ft. 

 S = 0° 

 

 
( )( )

Length Support Req. Min. in. 17.41.5N and
in. 6.110000125.011008.014002.08N  2

=
=×+×+×+=∴
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Provided Support Length at Abutments: 

 

13.5 in.7 in.

20.5 in.

13.5 in.7 in.

20.5 in.
 

 

Provided Support Length at Piers: 

 

21 in.21 in.

42 in.

21 in.21 in.

42 in.
 

 

Therefore, provided support lengths at abutments and pier are adequate. 

 

 20.5 in. > 17.4 in.  and  21 in. > 17.4 in.  OK 
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14.  Overview of Example Bridge Design With Metal Shell Piles 

 
If the piles for the current example bridge were metal shell (MS) and not HP type; the design 

steps, procedures and calculations would be quite similar to those presented in Parts 1 through 

13 above.  However, there are also some important differences.  Given below is an abbreviated 

design for the current example bridge with metal shell piles.  Emphasized are the differences in 

design procedures, etc. when metal shell piles are employed instead of HP piles. 

 

14.a.  Determination of Bridge Periods and Base Shears – Transverse and Longitudinal    

          Directions 

 

The MS piles to be used for the example bridge are 14 in. x 0.25 in. (Fy = 45 ksi, f’c = 3.5 ksi 

assumed for design).  As shown in the calculations above, the HP piles did not significantly 

contribute to the “seismic weight” of the bridge.  It is assumed here that the MS piles do not 

either.  As such, 1220 kips will again be used as the mass (weight) of the bridge for seismic 

design. 

 

The transverse and longitudinal periods of the example bridge with MS piles can be 

calculated in nearly the same manner as when the piles are HP.  The primary difference is in 

the stiffness calculation for the piles (and primarily involves the moment of inertia and/or the 

modulus of elasticity).  Other than this, Parts 1.b. through 1.f. for determining the transverse 

period, etc., Parts 2.b. through 2.d. for determining the longitudinal period, etc., and the 

methods for determining and distributing total seismic base design shears to the abutments 

and piers in Part 3 are the same as outlined above. 

 

It should be assumed that MS piles are reinforced concrete columns in soil with the shell 

acting as both the longitudinal (vertical) and transverse (“spiral”) reinforcement.  MS piles 

may also have added spirals and longitudinal bars, but this scenario is not considered in the 

current example.  For typical or regular bridges, it is recommended that the stiffness of the 

piles at the piers and abutments should be determined using the “equivalent” moments of 

inertia, Ip, given in Appendix C for MS piles (even if there are added longitudinal bars 

considered) and the modulus of elasticity for steel, Es (29000 ksi), as shown in the basic 

equation for pier and abutment stiffnesses below. 
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height pileh  where; 
h

IE3) or 12(piles) of .no(
k p3

p

ps
 Abutor Pier =

××
=  

 

Alternatively, the pile moment of inertia may be computed based upon the steel only with the 

equation below.  In this case, Es should be substituted with Ee (an equivalent modulus of 

elasticity using Eq. 6.9.5.1-5 of the LRFD Code), and Ip should be substituted with Ips in the 

equation above. 

 

shell pile of thicknesst                                                               

 and diameter, pile gross  where; 
4

t2
-

4
2

I

w

pile

4

w
pile

4
pile

ps

=

=φ
⎟
⎠
⎞

⎜
⎝
⎛ −φπ⎟

⎠
⎞

⎜
⎝
⎛φπ

=  

 

The values for hp are determined in the same manner as for HP piles (see also Appendix C).  

The fixed-fixed case should be used for the transverse direction (with the 12 factor) and the 

fixed-pinned case should be used for the longitudinal direction (with the 3 factor).  In the 

longitudinal direction, the “softening” effects due to rigid body rotation of caps at piers and 

abutments should be taken account of in the same manner as for HP piles. 

 

Using depths-of-fixity from Appendix C (fixed-fixed depth = 9.1 ft., and fixed-pinned depth = 

2 x 4.5 ft = 9.0 ft.), a modulus of elasticity of steel equal to 29000 ksi, and an equivalent 

moment of inertia of 358.4 in.4, the following pier and abutment stiffnesses were obtained: 

 

 kPier(Trans) = 146.7 k/in. 

 kAbut(Trans) = 478.9 k/in. 

kPier(Long) = 29.9 k/in. 

kAbut(Long) = 87.4 k/in. 

 

The transverse period was calculated to be 0.55 sec. using the simplified method and the 

longitudinal period was determined to be 0.73 sec.  As can be observed, the example bridge 

with metal shell piles is stiffer in the transverse and longitudinal directions than when the 

piles were HP.  As such, the total base shears in the transverse and longitudinal directions 

will be greater for the current example structure when MS piles are used.  The following are 
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the computed design base shears at the piers and abutments for the transverse and 

longitudinal directions: 

 

 VBase Shear P(T) = 239.4 kips 

 VBase Shear A(T) = 95.8 kips 

VBase Shear P(L) = 63.8 kips 

VBase Shear A(L) = 186.3 kips 

 

14.b.  Frame Analysis and Seismic Design Forces for Piers and Abutments 

 

The procedures outlined above for calculation of forces from overturning and frame action 

are identical irregardless of whether the piles are HP or metal shell.  The methods for 

employing R-factors, P-Δ effects and combination of orthogonal forces are also identical.  

However, since the piles have a round cross-section, the final seismic design shears and 

moments for each load case may be further simplified by performing a vector addition of the 

transverse and longitudinal directions (See Example 1 Part 6.c.).  Given below are the 

orthogonally combined seismic loadings for the piles in the piers and abutments along with 

the further simplified vector sums of the shears and moments. 

 

Piers - Load Case 1 - Longitudinal Dominant (per pile):  

 

kips  9.1V D
z =  

kips  3.10VD
y =  

ft.-k  2.23MD
z =  

ft.-k  5.35MD
y =  

kips 0.102 and 22.4  PD =  

 

Vector addition of the shears and moments further simplifies the design loads. 

 

kips  7.133.101.9V 22D =+=  

ft.-k  4.425.352.23M 22D =+=  

kips  102.0 and 4.22PD =  
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Piers - Load Case 2 - Transverse Dominant (per pile):  

 

kips 2.7VD
z =  

kips   2.34VD
y =  

ft.-k  5.77MD
z =  

ft.-k  6.10MD
y =  

kips 8.194 and (Ten.) 4.70  PD −=  

 

Vector addition of the shears and moments further simplifies the design loads. 

 

kips  3.342.347.2V 22D =+=  

ft.-k  2.786.105.77M 22D =+=  

kips  194.8 and (Ten.) 4.70PD −=  

 

Abutments - Load Case 1 - Longitudinal Dominant (per pile):  

 

kips  37.3VD
z =  

kips   8.5VD
y =  

ft.-k  5.17MD
z =  

ft.-k  1.174MD
y =  

kips 3.46 and 5.23  PD =  

 

Vector addition of the shears and moments further simplifies the design loads. 

 

kips  7.378.53.37V 22D =+=  

ft.-k  0.1751.1745.17M 22D =+=  

kips  46.3 and 5.23PD =  
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Abutments - Load Case 2 - Transverse Dominant (per pile):  

 

kips  11.2VD
z =  

kips   2.19VD
y =  

ft.-k  3.58MD
z =  

ft.-k  2.52MD
y =  

kips 9.72 and (Ten.) 1.3  PD −=  

 

Vector addition of the shears and moments further simplifies the design loads. 

 

kips  2.222.192.11V 22D =+=  

ft.-k  3.782.523.58M 22D =+=  

kips  72.9 and (Ten.) 1.3PD −=  

 

14.c.  Combined Axial Force and Bending Structural Capacity Check for Piers and  

          Abutments 

 

Appendix C provides nominal axial force - moment interaction strength diagrams for metal 

shell piles which do not have added vertical or spiral reinforcement.  The diagrams use a φ 

factor of 1.0 as permitted in the IDOT ERS strategy and are suitable for design.  They were 

developed using standard methods of structural engineering with the metal shell considered 

the columnar reinforcement according to LRFD Article 5.13.4.5.2.  The axial force-moment 

interaction diagram for MS 14 in. x 0.25 in. piles is shown below.  The critical load case for 

both the piers and abutments (Abutments – Load Case 1) is also superimposed on the 

diagram.  As can be observed, the loading is within the permissible envelope. 
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14.d.  Pile Shear Structural Capacity Check, Minimum Steel, and Pile Connection Details  

 

Seismic provisions for metal shell piles in Zone 2 are outlined in LRFD Article 5.13.4.6.2.  

Provisions for Zones 3 and 4 are given in LRFD Article 5.13.4.6.3.  As indicated in Part 14.c. 

above, the metal shell is permitted to be considered as reinforcement.  For many situations 

in Zone 2 (and Zone 1), added reinforcement bars in the piles may not be required for multi-

span (or single span) simply supported PPC deck beam bridges designed using the flexible 

option except for anchorage bars which are required when the piles are not embedded a full 

2 ft. – 0 in. into caps at piers and abutments. 

 

The cross sectional area of steel for 14 in. x 0.25 in. metal shells used in the current 

example is 10.8 in.2.  This is equivalent to almost 35 - #5 bars.  So, the “reinforcement” 

provided by these piles is substantial.  The vertical steel ratio, ρ, based upon the gross area 

of the piles (14 in. φ) is, 

 

 0702.0
in. 7

in. 8.10
22

2

=
×π

=ρ  
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LRFD Article 5.13.4.6.2a requires pile anchorage to have a minimum steel ratio of 0.01 

which equates to, 

 

( ) 222
a in. 54.1in. 701.0A =×π=  

 

or about 5 - #5 bars.  A modified version of the detail for metal shell reinforcement at 

abutments given on Departmental Base Sheet F-MS may be used as an anchorage detail 

when pile embedment at piers or abutments is only 1 ft. – 0 in.  The detail calls for 6 - # 5 

bars which are hooked 90° just above the end of the pile.  The Base Sheet detail should be 

modified using the detail shown in Part 11.b. above (or Bridge Manual Figure 3.15.5.5-1 

Option B) as a guide.  The bars should extend 1 ft. – 0 in. above the pile and be hooked 

180°.  When metal shell piles are embedded 2 ft. – 0 in., no added anchorage (connection) 

reinforcement is typically needed except as required by design.  See also Appendix C and 

Section 3.15.5.5 of the Bridge Manual for further guidance.  By inspection, uplift (tension) is 

not a concern for the bridge in the current example (the nominal capacity of 6 - #5 bars is ≈ 

110 kips). 

 

Minimum vertical (longitudinal) and spiral reinforcement requirements are outlined in LRFD 

Article 5.13.4.6.2b.  The minimum vertical steel reinforcement ratio is 0.005 which is 

satisfied by inspection from the calculation of ρ above (0.0702).  The spiral reinforcement 

ratio provided by the metal shell may be calculated as follows, 

 

0755.0
.in75.61

in. 8.10
 shell of height in. 1 a in concrete of Volume

shell of height in. 1 a in steel of Volume
32

3

)Provided(s =
×π×

==ρ  

 

Article 5.13.4.6.2b requires a #3 spiral at 4 in. within the upper plastic hinging region which 

equates to a spiral reinforcement ratio of (with the “spiral diameter” equal to 14 in. – 0.25 in. 

= 13.75 in.), 

 

0.0083
475.6
75.1311.0

turn spiral 1 in concrete of Volume
turn spiral 1 of Volume

2s =
××π

×π×
==ρ  
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Therefore, the shell provides just over 9 times the minimum required steel and is adequate 

for confinement.  A cursory check of the shear strength provided by the shell (see the 

method presented in Example 1 Part 7.b.) in comparison to the design shears also shows 

ample adequacy. 

 

14.e.  Pier Cap Reinforcement, Connection of Beams to Pier and Abutment Caps, and   

          Support Lengths 

 

Pier caps should have the same added reinforcement described in Part 11.c above.  The 

dowel bar connection should be designed according to Part 12, and support lengths should 

be verified according to Part 13. 
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Appendix A: Columnar Axial Force Solutions due to Overturning Moment for 12 Cases 
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Case A.1: Overturning Axial Forces for 2 Column Piers or 2 Piles in a Row 
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Case A.2: Overturning Axial Forces for 3 Column Piers or 3 Piles in a Row 
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Case A.3: Overturning Axial Forces for 4 Column Piers or 4 Piles in a Row 
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Case A.4: Overturning Axial Forces for 5 Column Piers or 5 Piles in a Row 
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Case A.5: Overturning Axial Forces for 6 Column Piers or 6 Piles in a Row 
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Case A.6: Overturning Axial Forces for 7 Column Piers or 7 Piles in a Row 
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Case A.7: Overturning Axial Forces for 8 Column Piers or 8 Piles in a Row 
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Case A.8: Overturning Axial Forces for 9 Column Piers or 9 Piles in a Row 
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Case A.9: Overturning Axial Forces for 10 Column Piers or 10 Piles in a Row 
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Case A.10: Overturning Axial Forces for 11 Column Piers or 11 Piles in a Row 
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Case A.11: Overturning Axial Forces for 12 Column Piers or 12 Piles in a Row 
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Case A.12: Overturning Axial Forces for 13 Column Piers or 13 Piles in a Row 
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Appendix B: Columnar Axial Force Solutions due to Frame Action for 5 Cases 
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Case B.1: Frame Action Axial Forces for 2 Column Piers or 2 Piles in a Row 
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Case B.2: Frame Action Axial Forces for 3 Column Piers or 3 Piles in a Row 
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Case B.3: Frame Action Axial Forces for 4 Column Piers or 4 Piles in a Row 
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Case B.4: Frame Action Axial Forces for 5 Column Piers or 5 Piles in a Row 
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Case B.5: Frame Action Axial Forces for 6 or More Column Piers or 6 or More Piles in a 

Row 
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Appendix C: Approximate Fixity Depths for H-Piles and Metal Shell Piles in Site Class 

D Soil, and Axial Force-Moment Interaction Diagrams for Metal Shell Piles 
 
Fixity depths which are generally suitable for typical seismic design for a wide range of 
situations are given in Tables C.1 and C.2.  Table C.1 presents depth-of-fixity values for steel H-
piles and Table C.2 presents depths-of-fixity for Metal Shell (MS) piles.  Three boundary 
conditions are given.  These are fixed-fixed, fixed-pinned, and the average of the two conditions.  
For H-piles, values for both the weak and strong axes are provided.  The provided moments of 
intertia for MS piles are “equivalent”.  The shell and the concrete behave as a reinforced 
concrete column with the shell acting as the reinforcement.  The provided moments of interia 
are at zero axial force and first yield of the steel shells under pure moment in soil. 
 
For all computed depths-of-fixity, the soil was assumed to have properties at the mid-point of 
Site Class D as defined in Appendix A of Section 3.15 of the Bridge Manual and in Section 3 of 
the LRFD Code.   However, it should be noted that Site Class D soil was only assumed to be in 
the “local region” of the pile, or about 2 to 3 times a pile’s fixity depth (in terms of deflection), 
and not necessarily in the entire upper 100 ft. of the soil profile.  The upper 100 ft. of the soil 
profile is typically used to determine the actual Site Class and corresponding Site Coefficients 
used to calculate the design response spectrum for a structure, but is not necessarily relevant 
for determination of pile fixity depths.   
 
Class D soil can fall into Soil Profile Types II or III as defined in LFD Div. I-A.  The Soil Profile or 
Site Class Definitions in Appendix A of Section 3.15 of the Bridge Manual and the LRFD Code 
are much more descriptive and numerically specific than those in the LFD Specifications. 
 
The depths-of-fixity given in Tables C.1 and C.2 may be used for soils with properties ranging 
from the lower bounds of Site Class C to the upper bounds of Site Class E for typical or 
“regular” bridges in Illinois (see Section 3.15.3.2 of the Bridge Manual for more information).  
The upper bounds of Site Class C soils tend to approach the properties of rock and are very 
stiff.  Pile foundations may not be applicable for such soils or piles may be set into rock (for 
which the depth-of-fixity would be known).  The lower bounds of Site Class E tend to approach 
poor site conditions for which special geotechnical and structural considerations are necessary.  
Some engineering judgment concerning the use of Tables C.1 and C.2 is required for borderline 
cases. 
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The depths-of-fixity given in Tables C.1 and C.2 are primarily intended for seismic design.  
Engineering judgment is required when using these tables for non-extreme event loadings.  
Lateral load versus deflection curves (that are non-linear) were generated for each considered 
case up to structural deformations which were just past initial yielding of the steel.  Linear 
regression was used to fit straight lines to the generated curves.  The slope of each fitted line 
represents a simplified stiffness (and depth-of-fixity) about the axes and for the boundary 
conditions considered for each pile.  The structural stiffness of piles that are at or beyond initial 
yielding of the steel are “softer” than for non-extreme event loading conditions. 
 
For typical bridge designs, the fixed-fixed case for piles is appropriate for many situations if the 
guidelines given in Section 3.10 and 3.15 of the Bridge Manual are followed for seismic design.  
However, cases where fixed-pinned is appropriate are also common.  The fixity depths given in 
Tables C.1 and C.2 are presented in terms of moment at initial yielding of the steel and not 
deflection.  For the fixed-fixed boundary condition case, fixity depths based upon moment and 
deflection are typically similar.  However, for the fixed-pinned case, fixity depths based upon 
deflection are typically about twice that of the depths based upon moment.  When required for 
global analytical models of bridges, it is more accurate to calculate substructure/foundation 
stiffnesses with depths-of-fixity based upon deflection.  For local analytical models, though, 
especially when used in conjunction with Appendix B, it is more accurate to calculate design 
forces with depths-of-fixity based upon moment.  See Examples 1 and 4 for applications of 
these principles in conjunction with Tables C.1 and C.2. 
 
Figures C.1 through C.4 provide nominal axial strength vs. moment strength interaction curves 
for MS piles.  These may be used for structural design of the piles as columns in soil and are 
not an indicator of geotechnical capacity.  MS piles may also have supplemental longitudinal 
(vertical) and shear/confinement (spiral) reinforcement provided in order to increase structural 
moment, axial force, and/or shear capacity.  Figures C.1 through C.4 are for MS piles without 
supplemental reinforcement.  Note that, in general, the details for reinforcement provided inside 
of MS piles on the Departmental Base Sheet (F-MS) at abutments are not considered structural 
for resisting moment or axial force from seismic loadings and should not be considered for 
confinement or shear.  The depth of vertical and spiral reinforcement shown on the 
Departmental Base Sheet for MS piles is typically insufficient for development of plastic hinges 
associated with seismic design principles.  However, if piles are embedded at least 2 ft. – 0 in. 
into piers or abutments, the details may be considered as anchorage reinforcement without 
modification.  The individual encasement detail for piles at piers on Base Sheet F-MS should 
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never be considered structural.  See Section 3.15.5.5 of the Bridge Manual and Part 14 of 
Example 4 for additional guidance. 
 
The information on fixity depths given below may be used at the designer’s discretion.  More 
complex analyses and refined stiffness determinations are not discouraged by the Department.  
When more accurate methods are used to determine pile fixity depths, the tables below can be 
used a guide to gauge whether a more sophisticated analysis is “in the ballpark”. 
 
The fixity depths presented in Tables C.1 and C.2 have been established for a variable range of 
soil conditions and design parameters intended to encompass a large population of structures.  
Given the variability that is likely to exist between a subject structure and the assumptions used 
in establishing the fixity depths, it is considered permissible to neglect “group action” factors 
when using the fixity depths presented in Tables C.1 and C.2. 
 
 

Mom. of Inertia Fix-Fix Fix-Pin Average Mom. of Inertia Fix-Fix Fix-Pin Average
Strong Depth Depth Depth Weak Depth Depth Depth
Axis of Fixity of Fixity of Fixity Axis of Fixity of Fixity of Fixity

Pile (in.4) (ft.) (ft.) (ft.) (in.4) (ft.) (ft.) (ft.)
HP 14x117 1220 12.5 6.3 9.4 443 9.8 4.8 7.3
HP 14x102 1050 12.0 6.1 9.1 380 9.3 4.6 7.0
HP 14x89 904 11.6 5.8 8.7 326 8.9 4.4 6.7
 HP 14x73 729 10.9 5.5 8.2 261 8.4 4.2 6.3
 HP 12x84 650 10.9 5.5 8.2 213 8.3 4.1 6.2
HP 12x74 569 10.5 5.3 7.9 186 8.0 4.0 6.0
HP 12x63 472 10.0 5.1 7.6 153 7.7 3.8 5.7
HP 12x53 393 9.6 4.9 7.2 127 7.3 3.6 5.5
HP 10x57 294 9.3 4.7 7.0 101 7.2 3.6 5.4
HP 10x42 210 8.6 4.4 6.5 71.7 6.7 3.3 5.0
 HP 8x36 119 8.0 4.0 6.0 40.3 6.2 3.1 4.6  

 
Table C.1: Fixity Depths in Site Class D Soil for H-Piles 

 
 

 
Equiv. Fix-Fix Fix-Pin Average

Mom. of Inertia Depth Depth Depth
Axis of Fixity of Fixity of Fixity

Pile (in.4) (ft.) (ft.) (ft.)
MS 14x0.312 420 9.5 4.7 7.1
MS 14x0.25 358.4 9.1 4.5 6.8
MS 12x0.25 214.2 8.3 4.1 6.2
MS 12x0.179 163.2 7.7 3.8 5.8  

 
Table C.2: Fixity Depths in Site Class D Soil for Metal Shell Piles 



Design Guides            3.15 - Seismic Design 

Page 3.15-136                 May 2008 

 

 
Figure C.1: Nominal Axial Strength vs. Moment Strength Interaction Diagram for 12 x 

0.179 in. Metal Shell Piles with Fy = 45 ksi and f’c = 3.5 ksi 
 
 

 
Figure C.2: Nominal Axial Strength vs. Moment Strength Interaction Diagram for 12 x 

0.25 in. Metal Shell Piles with Fy = 45 ksi and f’c = 3.5 ksi 
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Figure C.3: Nominal Axial Strength vs. Moment Strength Interaction Diagram for 14 x 

0.25 in. Metal Shell Piles with Fy = 45 ksi and f’c = 3.5 ksi 
 
 

 
Figure C.4: Nominal Axial Strength vs. Moment Strength Interaction Diagram for 14 x 

0.312 in. Metal Shell Piles with Fy = 45 ksi and f’c = 3.5 ksi 
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