PCC MIX DESIGN	
SOFTWARE TUTORIAL	For help, comments, and/or suggestions, please email:
	DOT.PCCMIX@illinois.gov

Version 2.6

!!! IMPORTANT !!! This spreadsheet utilizes macros. For a version without macros, please use Version X1.1.

<u>General</u>

This spreadsheet is designed to calculate and report PCC mix designs for submittal to IDOT. The spreadsheet is comprised of data inputs based on the mix design methodology provided in the PCC Level III Technician course manual.

Buttons are provided for ease of navigation, and their use is recommended as they ensure proper operation throughout the design process. Using the worksheet tabs, found at the bottom of the Excel screen, will also work.

The blue-shaded areas are cells which require data input, green-shaded areas are optional (unless required by your District), and white cells are calculation fields, which are protected from accidental overwriting.

Throughout the spreadsheet, comments have been interspersed to offer hints on where to find relevant information. To view comments, hold the cursor over the red tags found in the upper righthand corner of commented cells, as shown below. These comments generally refer to sections of the Course Manual; however, it should be noted that the Department's Standard Specifications and Special Provisions take precedence.

START.	Select Units of Measure:	ENGLISH	C	
Step 1.	Mix Design No.		р	Contractor/Producer designated mix design number.
	IDOT Design No		Ν	This is NOT the IDOT mix design number (below), s
	Date Created		m	of the mix design.
	Concrete Code	Code 21605 - PCC Ce		ent & Fly Ash

Figure 1. Example of a comment; note red flag, which indicates the cell has a comment.

Tutorial Mix Design

This tutorial also includes notes for how to input the example mix design discussed in Section 2.8 of the Course Manual. If you follow the notes in order as they are presented herein, you should successfully create a basic PCC paving mix design while also being introduced to all of the spreadsheet's functions and capabilities.

Step 1. Design Information

The Design Information page is important to establish the who-what-where of the mix design. This is where the designer decides in which units of measure the mix will be designed, what type of concrete it is, for what Classes of concrete it is valid, and those responsible for the mix design.

<u>Fit to Screen [button]</u>: Click this button to optimize each page of the mix design spreadsheet for viewing on your screen.

<u>English/Metric [toggle]</u>: Toggle button for selecting the units of measure for the mix design's inputs. All data inputs will have to be entered in the chosen units of measure. However, the design will be reported in **both** units of measure on the different final mix design reports generated.

EXAMPLE
PROBLEMAssuming most of us are more comfortable using English units of measure (lbs, yd³, etc.),
the example mix design will be designed using English units.Click on the ENGLISH toggle button.

<u>Mix Design No.</u>: Alphanumeric designation (up to nine characters in length). This is the Producer's or Contractor's self-designated mix design number; this is not the mix design number assigned by IDOT, see "IDOT Mix Design No." below.

EXAMPLEBecause this is the Producer's or Contractor's mix design number, any reasonably succinct
and unique identifier can be used here. For this example, we will use PMC0001PV (i.e.,
Pave Masters Co. paving mix #1).

<u>IDOT Mix Design No.:</u> Alphanumeric mix design number reported to the Department's CMMS database. This number will be assigned by your District to an approved mix design.

EXAMPLE Because this mix design number is assigned by the District upon approval, this cell reads **PROBLEM** [TBD by IDOT].

<u>Date Created:</u> The date the mix design was created.

Step 1. Design Information (continued)

<u>Concrete Code:</u> Select the appropriate material code. This code is used by the Department's CMMS database to designate the type of concrete.

EXAMPLE Because this mix will utilize Type IL portland cement and Class C fly ash, the appropriate Concrete Code to select from the drop-down list is **21605**.

Class:

Select up to five Classes of concrete.

EXAMPLEBecause this mix will be used for a continuously reinforced portland cement concretePROBLEMpavement, the appropriate Class to select is PV.

<u>Responsible Location:</u> District responsible for mix design's use; for example, "91" for District 1.

EXAMPLE PROBLEM	Select one of the nine IDOT Districts with which you typically work; for example, select 91 if you often work with District 1 in the Chicago area.
Company Name:	Name of producer/contractor/consultant responsible for creating the mix design.
Location:	Nearest municipality to Company.
Designer:	Name, phone number, and email of person that created the design.
Mix Producer:	IDOT-assigned producer number and name of producer.

Step 2. Design Variables

The Design Variables page is were the designer first begins to determine the mix design's parameters that factor into the mix design calculations.

		FIT TO SCR	EEN	If you used the optional step for Typ IL cement, here are the Cement	
Design variables		1		Factor values calculated for each	Return to Start.
Batch Size	1.00	cubic yard	Optional step for	option.	Design Information
Cement Factor	5.35	cwt / cu yd	Type IL Cement	Option 1: 5.70	
Mortar Factor	0.83	Typically >1.00		Option 2: 5.70	Step 3. Enter Aggregate Informatio
			× ×		
Target Air Content	6.5	%		Option 3: 5.56	Step 4
Target Air Content	6.5	%		Option 3: 5:56	Step 4. Enter Finely Divided Minerals & Admixtures
Target Air Content Determine Water Cor	6.5 ntent: • A. w.	%	B. Basic Water Req.	Option 3: 5:56	Step 4. Enter Finely Divided Minerals & Admixtures View Design Report
Target Air Content Determine Water Cor ignore >>>	6.5 ntent: • A. w.	% /c Ratio Method	B. Basic Water Req.	Option 3: 5:56 See Addendum on page 13.	Step 4. Enter Finely Divided Minerals & Admixtures View Design Report (English units)
Target Air Content Determine Water Cor ignore >>> Enter W/C Ratio >	6.5 ntent: • A. w n/a 0.42	%	B. Basic Water Req.	Option 3: 5:56 See Addendum on page 13.	Step 4. Enter Finely Divided Minerals & Admixtures View Design Report (English units) View Design Report
Target Air Content Determine Water Cor ignore >>> Enter W/C Ratio > ignore >>>	6.5 ntent: • A. w n/a 0.42	%	B. Basic Water Req.	Option 3: 5:56 See Addendum on page 13.	Step 4. Enter Finely Divided Minerals & Admixtures View Design Report (English units) View Design Report (metric units)

Batch Size: Batch size in cubic yards (cubic meters). All mix designs are created per 1 yd³ (1 m³).

Cement Factor:

actor: Cement quantity in hundredweight per cubic yard (kilograms per cubic meter).

EXAMPLE PROBLEM	From Table 2.2.1 in the Course Manual, the cement factor for Class PV concrete from a central mixed plant is 5.65 cwt/yd ³ .
	Also, from Section 2.2.2, a cement factor reduction of 0.30 cwt/yd ³ can be applied because a water-reducing admixture will be used.
	Thus, the final, adjusted cement factor is reduced to 5.35 cwt/yd ³ .

Mortar Factor: Refer to Table 2.7.2.2 Design Mortar Factor in the Course Manual.

EXAMPLE PROBLEM	From Table 2.7.2.2 in the Course Manual, a mortar factor can be selected for Class PV concrete.
	Enter 0.83 as a reasonable starting point.

<u>Target Air Content:</u> Percentage of entrained air in the concrete to improve durability. Refer to Table 2.6 *Air Content* in the Course Manual.

EXAMPLE From Table 2.6 in the Course Manual, the midpoint of the air content range for **PROBLEM** Class PV concrete is **6.5%**.

Step 2. <u>Design Variables</u> (continued)

Determine Water Content

First, using the toggle switch, select either the w/c Ratio Method or the Basic Water Requirement Method.

The *w/c Ratio Method* will determine water content based on the w/c ratio entered and the total content of cement and finely divided minerals. No water adjustment needs to be entered as it will be back-calculated based on the w/c ratio and assumed aggregate water requirements (see Note).

Note: If the "w/c Ratio Method" is selected, the spreadsheet will assume a Type B fine aggregate with basic water requirement of 5.3 gal/cwt (0.44 L/kg).

Alternatively, the *Basic Water Requirement* method requires the fine and coarse aggregate water requirements, as well as percent water reduction. Refer to Appendix Q *Basic and Adjusted Water Requirement Method* in the Course Manual for more information. See next page for when using the *Basic Water Requirement* method.

If the W/C Ratio Method has been selected:

Determine Water Co	Determine Water Content:		/c Ratio Method	O B. Basic Water Req.
ignore >>>	n/a			•
Enter W/C Ratio >	0.4	2		
ignore >>>				
ignore >>>			Wate	r Adjustment Help

Enter W/C Ratio:

When *w/c Ratio Method* is toggled, this field appears. Enter the target w/c ratio that the design water content will be based on; for example, 0.42.

EXAMPLE
PROBLEMIn this example, per Table 2.5 in the Course Manual, the maximum w/c for
Class PV concrete is 0.42.

Step 2. Design Variables (continued)

If the Basic Water Requirement Method has been selected:

Det	termine Wa	ter Coi	ntent:	🔿 A. w/o	Ratio Method	B. Basic Water Re	eq.
	F/	\ Туре	"B" Combin	ation of rou	nded and angu	ılar particles 🔻	
FA Water Req. 5.3 gal/cwt							
	CA Wate	r Req.	0.2 gal/cwt				
Water Reduction 5.0 % Water			er Adjustment Help				
			-				
<u>\ Type:</u>	Sel	ect fine agg	gregate type.				
[EXAMPLE PROBLEM	Assume ti drop-dowr	his mix will uti n list.	lize a Type "	B" fine aggrega	te, select B from the]
Water	Req.: Wa	ter requirer nent and fin	ment for fine a nely divided m	aggregate in inerals. This	gallons per hu s value is based	ndredweight (liters per ki on the type of fine aggre	logram) gate.
[EXAMPLE PROBLEM	Assuming	ן this mix will נ	utilize a Type	e "B" fine aggreg	ate, enter 5.3 gal/cwt .]
<u> Water</u>	<u>Req.:</u> Wa of c agg	ter requirer ement and regate.	ment for coars I finely divided	se aggregate d minerals m	e in gallons per naterial. This va	hundredweight (liters per llue is based on the type	kilogra of coa
	EXAMPLE PROBLEM	Because	this mix will ut	ilize a crush	ed stone, enter	0.2 gal/cwt.	
ater Red	duction: Per as a bec intu add wat	centage of admixture trause this i itive; that i lition should er reduction	water adjustr use, cement a nput is referr s, a water re d be entered a n, and enter "	nent (typical and finely di ed to as a ' duction sho as a negative -10.0" for a 1	ly a reduction) a vided mineral c <u>reduction</u> ," the uld be entered e value. For exa 0 percent water	accounting for various fac ontent, air content, etc. value entered may seer as a positive value, whi ample, enter "10.0" for a 2 addition.	ctors, su Note th n count le a wa 10 perce
	For Wa	help deterr ter Require	mining a reasc ement Method	onable water	adjustment, refe se Manual.	er to Appendix Q <i>Basic an</i>	d Adjus
	EXAMPLE PROBLEM	Because t	this mix will ut	ilize a water	-reducing admix	ture to provide a target]
		Note: If fo	r some reason ve entered -10	n this mix ne	eded a 10 perce	ent water <u>addition</u> , you	

Step 3. Aggregate Information

The Aggregate Information worksheet is where the designer enters all fine and coarse aggregate information.

Aggregate Ir	nformation	FILTO SCREEN			
Material Code	Producer Number	Producer Name	SSD Sp. Gravity	% Blend	Return to Start. Design Information
027fa01	54321-01	little rocks co.	2.660	100.0	Return to Step 2.
022ca07	12345-05	big rock co.	2.680	100.0	Design Variables
					Step 4. Enter Finely Divided Minera & Admixtures Info
					View Report (English
					View Report (metric)
		Coarse Aggregate Voids Enter voids, V	/ = 0.39		View MISTIC Report

<u>Material:</u>	Aggregate material codes. Coarse and fine aggregates may be entered in any order, except as required by your District.
EXAMPLE PROBLEM	• Fine aggregate: Enter 027FA01 as given in the Course Manual. This material code is for an "A" quality natural sand meeting the gradation criteria for FA 1 per Article 1003.01(c).
	 Coarse aggregate: Enter 022CA07 as given in the Course Manual. This material code is for an "A" quality crushed stone meeting the gradation criteria for CA 7 per Article 1004.01(c).

<u>Producer Number:</u> Aggregate producer number. This field is required for all aggregate components.

Producer Name: Aggregate producer name.

<u>Specific Gravity:</u> Saturated Surface Dry (SSD) specific gravity of each aggregate.

EXAMPLE PROBLEMThe example problem as given in the Course Manual indicates that the saturated surfacedry specific gravities for the fine and coarse aggregate components are **2.66** and **2.68**, respectively.

<u>% Blend:</u> Percent blend for aggregate components. If only using one coarse aggregate and one fine aggregate material, enter "100" for each. On the other hand, if blending coarse aggregate materials, say, CA 11 and CA 16 at 75 and 25 percent, respectively, enter a "75" for the CA 11 and a "25" for the CA 16. Similarly, if blending fine aggregate materials. Do not blend coarse and fine aggregate, except as noted below for CAM II:

Note for CAM II designs *only*—Recommended % Blend of coarse-to-fine aggregate: 50-50 when using CA 7, CA 9, or CA 11; 75-25 when using CA 6; and 100-0 (i.e., no fine aggregate) when using CA 10. For example, when using CA 6 and FA 1, enter "75" for the CA 6 and "25" for the FA 1.

EXAMPLE	Because this mix is utilizing one coarse aggregate component and one fine aggregate
PROBLEM	component (and the mix is not CAM II), enter 100 for coarse aggregate and 100 for fine
	aggregate.

Step 3. Aggregate Information (continued)

Coarse Aggregate Voids

Refer to the District office verifying your mix design for guidance on what value to use for Voids. For example, some Districts may provide a value for general aggregate types, such as "0.36" for gravels, or one value for all aggregates.

Important: Enter "1.00" for any mix design that does not contain coarse aggregate.

Coarse Aggregate Voids				
Enter voids, V =	0.39			

EXAMPLE	The example problem as given in the Course Manual notes that the Voids for the
PROBLEM	coarse aggregate is 0.39 .

Step 4. Finely Divided Minerals & Admixtures Information

This worksheet is where the designer enters all information pertaining to cement and finely divided minerals, as well as chemical admixtures (e.g., air-entraining water-reducing admixtures, etc.).

IVI	aterial	Producer	Producer	Specific	Percent	Replacement	Return to Start
(Code	Number	Name	Gravity	Blend	Ratio	Design Information
37708 Type IL Lim	estone 💌	555-01	Big Cement, Co.	3.150	75.0		Return to Step 2
37801 Fly Ash Cla	ss C 🗸	43215-01	Ash Marketers, Inc.	2.610	25.0		Design Variables
Select Slag	•						Return to Step
Select Other FDM	1 🔻						Aggregate Informati
					100%		
				Ontion 1	Option 2	Ontion 2	Report (English
If you used t	ne optional Cement F	actor tab to	Percent Blend Ceme	nt 75.0	76.9	76.9	Report (metric
optimize port	land cement content :	and/or FDM	Percent Diend CDI	00.4*	00.1*	MISTIC Report	
replacement,	each option.	liculated for	*If using more than one ED	IS. 20" M. divida thia vali	23.1"	23.1"	
	-		If using more man one rib	m, uivide tills valu	ie as appropri	ate among the roms.	
Admixture I	nformation					—	
Admixture I Material	nformation Admixture	туре	Product Name	Rem	arks]	
Admixture I Material Code	nformation Admixture (ASTM C	• Type 494)	Product Name	Rem (e.g. dos	arks age rate)		See Addendu
Admixture I Material Code 42000	Admixture (ASTM C AEA - Air Entraining	• Type 494) ▼	Product Name Air Plus X	Rem (e.g. dos 0.5 - 4.1	narks age rate) 0 oz/cwt		See Addendu
Admixture I Material Code 42000 43000	Admixture (ASTM C AEA - Air Entraining A - Water Reducer	Type 494)	Product Name Air Plus X Water Reducto 2000	Rem (e.g. dos 0.5 - 4.1 2.0 - 10.	narks age rate) 0 oz/cwt .0 oz/cwt		See Addendu on page 13.
Admixture I Material Code 42000 43000	Admixture (ASTM C AEA - Air Entraining A - Water Reducer n/a	Type 494)	Product Name Air Plus X Water Reducto 2000	(e.g. dos 0.5 - 4.0 2.0 - 10.	narks age rate) 0 oz/cwt .0 oz/cwt		See Addendu on page 13.

Material:

Cement and finely divided mineral (FDM) material codes. Each line is dedicated to a specific material: Line 1 for cement, Line 2 for fly ash, Line 3 for GGBF slag, and Line 4 for miscellaneous (e.g., microsilica, high-reactivity metakaolin, etc.).

EXAMPLE PROBLEM	Because this mix will utilize a Type IL cement and Class C fly ash, Lines 1 and 2 will be used.						
	Cement: select 37708 Type IL, Limestone from the drop-down list.						
• Fly ash: select 37801 Fly Ash Class C from the drop-down list.							
Producer Numbe	<u>r:</u> Material producer number. This field is required for all finely divided minerals.						
Producer Name:	Material producer name.						
Specific Gravity:	Specific gravity of each material. The specific gravity of cement is normally assumed to b 3.15 for ordinary portland cement or portland-limestone cement. However, for portland pozzolan or portland-slag cements, this value should be verified with the District. Specifi gravity values for finely divided minerals can be obtained from the Qualified Producer List of Finely Divided Minerals.						
EXAMPLE PROBLEM	The example problem as given in the Course Manual notes that the specific gravity for the fly ash component is 2.61 .						
	The specific gravity of portland-limestone cement is assumed to be 3.15 .						

Step 4. Finely Divided Minerals & Admixtures Information (continued)

<u>Percent Blend:</u> The blend percentage must be entered for each material, totaling 100. For example, when blending fly ash and cement at 20 and 80 percent, respectively, enter "20" for the fly ash and "80" for the cement.

EXAMPLE PROBLEM	First, we have to determine if we need to mitigate for alkali-silica reaction (ASR):
	From Section 2.4.3 in the Course Manual, it is determined that the component aggregates are Group II (fine aggregate expansion in the >0.16% - 0.27% range and coarse aggregate expansion $\leq 0.16\%$). Thus, we are required to use Mix Option 1, 2, 3, 4, or 5.
	Because the example problem as given notes that the mix will utilize a cement with alkali content >0.60% and a Class C fly ash, we will use Mix Option 2 .
	Mix Option 2 requires a minimum 25.0 percent Class C fly ash.
	Furthermore, from Section 2.4.1.1 in the Course Manual, the Class C fly ash component can replace up to 30 percent of the cement.
	Thus, it is decided to use 25 percent fly ash. Because the total Percent Blend must equal 100, enter 75.0 for the cement and 25.0 for the fly ash.

<u>Replacement Ratio:</u> (Optional) Enter the replacement ratio for each finely divided mineral, if applicable. If left blank, the default value of "1.00" will be used.

Step 5. Admixtures Information

<u>Material Code:</u> Enter admixture material codes here. The 5-digit material code for admixtures can be found on the Approved/Qualified Product List of Concrete Admixtures.

- Admixture Type: Choose admixture type.
- Product Name: Enter admixture product's name.

<u>Remarks:</u> Enter key information regarding proposed dosage rates, dosing procedures, etc.

Step 6. General Mixture Remarks

<u>Remarks:</u> Enter any pertinent information not already covered. When required to mitigate for alkalisilica reaction (ASR), indicate the mixture option selected.

EXAMPLE PROBLEM	Because we are required to mitigate for alkali-silica reaction, we must indicate the mixture option selected.
	Enter ASR Mix Option 2, 25% fly ash.

Latex Admixture Information (only required for mix designs using a latex admixture)

Batch Dosage:	Enter latex admixture dosage in terms of gallons per cubic yard (liters per cubic meter).
Specific Gravity:	Enter manufacturer's specific gravity for the latex admixture.
% Solids:	Enter manufacturer's percent solids for the latex admixture.

Design Report

Given the inputs, the mix design proportions are calculated and reported. Three design reports are generated: one in English units of measure, one in metric (SI), and one formatted for Departmental prior to submittal to CMMS.

ENGLISH UNITS DESIGN REPORT											
PCC MIX DESIG	N										Version 2.6
IDOT MIX #:	Not Assigned	MATERIAL	21605	CONCRET	E PC FLY	SH	EFFECTIVE:				
CONTR MIX #:	PMC0001PV	CLASS	PV								-
RESP: 91	DISTRICT 1	_		_			REV	IEWED BY:			_
BATCH	H2O% FINE	%	(7)	MORTAR	(TYP	F}	{GAI	CWT3	{AB	S VOL3	
CUYD ADX	RED MOD	AIR VOIDS	CEMENT	FACTOR	ASH	_, FA	FA	CA	CA,B	FA,A	_
1.00	5.0	6.5 .39	5.35	0.83	С	В	5.30	0.00	0.4236	0.2690]
								%MOIST/	[BS		
MATERIAL	PROD NO	PROD NAME			SP G	% B	LEND	REPL	SSD	ADJ	ADJ
027FA01	54321-01	LITTLE ROCKS C	Ю.		2.660	10	0.00		1205	1205	718
022CA07	12345-05	BIG ROCK CO.			2.680	10	0.00	-	1912	1912	1135
											<u>+</u>
37708	555-01	BIG CEMENT, CO).		3.150	7	5.0	1.00	405	405	240
37801	43215-01	ASH MARKETER	S, INC.		2.610	2	5.0	1.00	135	135	80
								(dal : lbs)	27.3	227	135
{FA	+ CA} MIX-H2O	5.30	W/C RATIO	0.42		тс	TAL BAT	CH WT (lbs)	21.0	3884	2308
TOTAL CEME	NTITIOUS MATL	5.40					THEO. H2	O (gal : lbs)	27.2	227	ļ
	1234-05										
REMARKS:	ASR Mix Option	2. 25% fly ash			•						
REMARKS:		, <u><u></u> </u>						-			
ADDITIONAL IN	FORMATION:	Lab: PAVE N	IASTERS CO.	Location:	CHICAGO		-				-
Matl		Designer: SMITH		_ Created:	01/09/24						
Adx(S): Code	Type Product	Name	Remarks	_			Docid	anor Phono:	555 555 51	555	
42000	A WATER	REDUCTO 2000	2.0 - 10.0 oz/cwt				Des	igner email:	john.smith@	@email.com	
				_				0			Printed
				_							4/11/2024
			METRIC					-			
	NI.										Version 2.6
FGG MIX DESIG											
IDOT MIX #:	Not Assigned	MATERIAL	21605M	CONCRET	E PC FLY	ASH		EF	FECTIVE:		
CONTR MIX #:	PMC0001PV	CLASS	PV	_							-
RESP: 91	DISTRICT 1						REV	IEWED BY:			_
ватен	H20% EINE	0/2	(7)	MORTAR		E1	л	/ KGI		S VOL	
CUM ADX	RED MOD	AIR VOIDS	CEMENT	FACTOR	ASH	FA	FA	CA	CA.B	FA.A	
1 00	5.0	6.5 .39	320	0.83	С	В	0.4420	0.0000	0.4236	0.2700	1

001172		DUOC	0.451		01.402									-
CONTR	MIX #:	PMC0	J01PV	-	CLASS:	PV	_							
RESP:	91	DISTRI	CT 1							REV	IEWED BY:			_
BATCH		H20%	FINE	%		(Z)	MORTAR	{TYF	PE}	{L /	KG}	{AB	S. VOL}	
CU M	ADX	RED	MOD	AIR	VOIDS	CEMENT	FACTOR	ASH	FA	FA	CA	CA,B	FA,A	_
1.00		5.0		6.5	.39	320	0.83	С	В	0.4420	0.0000	0.4236	0.2700]
						-								-
											%MOIST /	[KG	[LBS / CU YD]	
MATERI	AL	PROD	NO	PROD N	AME			SP G	% B	LEND	REPL	SSD	ADJ	
027FAM	01	54321-	01	LITTLE F	OCKS C	0.		2.660	1	00.0		718	718	1205
022CAM	107	12345	.05	BIG ROC	K CO			2 680	1	00.0	-	1135	1135	1012
022074		12040		Dio no c				2.000				1100	1100	1312
2770014		555.04						2 4 5 0	7	5.0	4.00	0.10	0.10	105
377081		555-01		BIGCEN	IENT, CO			3.150		5.0	1.00	240	240	405
37801M		43215-	01	ASH MA	RKETER	S, INC.		2.610	2	5.0	1.00	80	80	135
					-					ADJ. H	H2O (L∶kg)	134.4	134	226
	{FA	+ CA} N	/IX-H2O:	0.4420		W/C RATIO	: 0.42		TC	OTAL BAT	CH WT (kg)		2308	3883
TOTAL	CEME	NTITIOU	S MATL:	320						THEO, H2	20 (kg : lbs)	134.4	226	
														-
PRO	DUCER:	123	34-05	PRO	D NAME:	EVERYMAN R	EDI-MIX CO).						
REM	MARKS.	ASR M	ix Option	2 25% fl	/ ash									
REN	MARKS	/ 10/11/1	in option	2, 2070 11	don						-			
		EODM		L ob:		ASTERS CO	Location:	CHICACO						=
ADDITIC		FURIM	TION.	Lau. Docignor:		ASTERS CO.	_ Lucation.	01/00/24		-				
A -1(-)-	Iviati	L -		Designer.	SIVILLE		_ Created.	01/09/24						
Adx(s):	Code	Туре	Product	Name		Remarks	_			Desi	D			
	42000	AEA	AIR PLUS	S X		0.5 - 4.0 oz/cwt	_			Desig	gner Phone:	555-555-5	555	
	43000	A	WATER	REDUCTO 2	000	2.0 - 10.0 oz/cwt	_			Des	igner email:	jonn.smith(@email.com	
			<u> </u>				_							Printed
						L	_							4/11/2024

	CMMS DESIGN REPORT												
				PCC DESIGN MIX									
IDOT Acceptance Info		IDOT MIX #:	91PCCXX555										
Reviewer (first & last name):	John Jones	PRODUCER MIX #:	PMC0001PV	CE	CEMENT FACTOR, cwt/			5.35					
IDOT PCC Mix No.:	91pccXX555	MATERIAL CODE:	21605	MORTAR FACTO				0.83					
Approval Date (m/d/yyyy):	1/30/2024	CLASS(ES):	LASS(ES): PV CA VO					0.39					
Effective Date (m/d/yyyy):	2/1/2024	RESP. DISTRICT:	91				♣ AIR:	6.5					
		REVIEWED BY:	JOHN JONES			W/C	RATIO:	0.42					
For IDOT Use	e Only												
Submit to Cr	VIIVIS	PRODUCER NO.:	1234-05		E	FFECTIV	E DATE:	2/1/2024					
		PRODUCER NAME:	EVERYMAN RE	DI-MIX CO.									
							W	(eight (SSD)					
		AGGREGATE	Producer No	. Producer Name		Sp. G.	% Blend	lbs / cu yd					
		027FA01	54321-01	LITTLE ROCKS CO.		2.66	100	1205					
		022CA07	12345-05	BIG ROCK CO.		2.68	100	1912					
		CEMENTITIOUS	Producer No	. Producer Name		Sp. G.	8 Blend:	lbs / cu yd					
		37708	555-01	BIG CEMENT, CO.		3.15	75	405					
		37801	43215-01	ASH MARKETERS, INC.		2.61	25	135					
				TH	EO. WAT	ER (lbs,	(cu yd)	227					
		Code	Dosage	TOTAL	BATCH	WT (lbs,	/cu yd)	3884					
		LATEX: 43700	gal/	zu yd									
				TH	EO. WAT	ER (gal,	/cu yd)	27.2					
		REMARKS: ASR MIX	Option 2, 2	5% fly ash									
		DESTGNED SMITH											
		PHONE: 555-555	-5555										
		EMAIL: john.sm	ith@email.co	m									
		2											
		ADMIXTURES :	Code Type	Name	Remark	s							
			42000 AEA	AIR PLUS X	0.5 -	4.0 oz/	ewt						
			43000 A	WATER REDUCTO 2000	2.0 -	10.0 oz	/cwt						
								I					

Note for IDOT Users: The CMMS Report has four input fields to be completed by the District when approving a *mix design*. Once a mix design is approved, click the "Submit to CMMS" button to export the file to CMMS.

ADDENDUM Optional Step when using Type IL Cement

On the Design Variables tab/page, you will now find a link/button to a new tab, "Cement Factor (Optional)." This new, optional step has been added for the mix designer's consideration in light of experiences some producers have had since transitioning to Type IL portland-limestone cement.

The options provided should not be used for non-blended cements (e.g., Type I/II, III).

Three options are provided that the mix designer may find useful:

• Option 1: Ensuring a certain portland cement content is included in your mix. In this case, you the mix designer want a certain amount of portland cement in your mix, taking into account that not all of a Type IL cement is made up of portland cement. This option may be of interest for lean mixes (i.e., low total cementitious content), particularly those that include finely divided minerals (e.g., fly ash, slag). For 'straight cement' mixes, IDOT's current minimum cement factors ought to have no problem ensuring sufficient portland cement is included in the mix. For example., even the leanest 535-lbs/yd³ mix using a Type IL(15) cement would have about 455 lbs/yd³ portland cement; historically, the least amount of portland cement in a conventional IDOT PCC design was about 400 lbs/yd³.

Please note that the premise of this option is not intended to imply that the Department believes there is indeed a minimum portland cement content necessary to achieve certain desired performance results. Nor is it intended to imply that to have performance equivalent to a mix previously designed with Type I/II cement, you should factor out any of the added limestone. This option is purely intended to provide a simple, consistent means to calculate the amount of Type IL cement necessary to ensure a designer-specified amount of portland cement is included in a mix. This option (and similarly, option 3) is provided to acknowledge that some mix designers may have found in their experience that there is a minimum portland cement content they need due to different cement sources, types of mixes and applications, plant configurations, etc.

• Option 2: Wanting to minimize FDM replacement when using a blended cement. In this case, you the mix designer wish the FDM replacement to be based only on the portland cement portion of the Type IL cement.

For example, you have a 605 lbs/yd³ Class BS mix using Type IL(10) cement and 25% GGBF slag. Previously, when calculating the replacement of a Type I/II cement, it was simply 25% of 605, resulting in approximately 150 lbs/yd³ slag and about 455 lbs/yd³ of cement. However, if trying to base the replacement on only the portland cement portion of a Type IL cement, the calculation is more complicated (see Note 1). Using the spreadsheet for this example, you will find that your mix can offset the slag replacement, thereby increasing the cement content, by about 10 lbs/yd³.

• **Option 3: Combining options 1 and 2.** This case simply allows you the mix designer to both specify a certain portland cement content is included in your mix as well as minimize any FDM replacement by calculating it based only on your specified portland cement content.

CASE STUDY EXAMPLES

OPTION 1 CASE STUDY	Say you typically mitigate for ASR using 25% GGBF slag. For the leanest of your central-mixed paving designs (i.e., 535 lbs/yd ³ total cementitious), if using a Type IL(10) cement, the portland cement content is 361 lbs/yd ³ . However, based on the performance of a number of your designs, you've decided your mixes need at least 385 lbs/yd ³ portland cement to perform to your expectations (e.g., rate of early and/or ultimate strength gain, time to set, time to saw joints, etc.).											
	After entering the necessary inputs into the spreadsheet, you see that you'll need 428 lbs/yd ³ Type IL(10) cement to obtain 385 lbs/yd ³ portland cement. And because the cement portion of your total cementitious has increased, the amount of slag needed has also increased to maintain the 25% FDM replacement, resulting in a total cementitious of 570 lbs/yd ³ .											
	of a blended cement is mad Enter Desired Portland Cement				d cement. Enter Percent Total FDM				Minimum Cement Factor	Percent Cement to enter on	Percent FDM to enter on	
			Content (Ibs/cu yd)	Limestone Content (%)	Replacement Note 2		Cement (Ibs/cu yd)	Total FDM (Ibs/cu yd)	to enter on Variables tab	FDM & Admix tab	FDM & Admix tab Note 1	
			385	10.0	25.0		428	143	5.70	75.0%	25.0 <mark>%</mark>	
				Portland	d Cement Conte	ent (Ibs/cu yd):	385					

OPTION 2 CASE STUDY	ash replacement to mitigate for ASR. In an effort to manage your fly ash demand due a run of shortages and restrictions, you've decided to base the percent replacement on only the portland cement portion of your Type IL(10).										
	After entering the necessary inputs into the spi	aadshaat v	In see th	nat vou'll r	how hood	about 132					
	Alter entering the necessary inputs into the sphead sheet, you see that you into intered about 152										
	1000 lbs/yd ³ of fly ash. This works out to about 10 lbs/yd ³ less than before (an 8% reduction).										
	2) If wanting to minimize FDM replacement:										
	In this case, you are wanting to calculate FDM replacement based on	v on the amount o	of portland cen	nent in vour mix	With respect	to ASR					
	mitigation, this will still meet the intent of Mixture Option 2 (Article 102)	.05(d)(2)b of the	Standard Spe	cifications) as	long as the "Pe	rcent Total					
	FDM Replacement" entered meets the minimums specified (e.g., 25.09	if using fly ash.	GGBF slag, or	a combination	thereof).						
	·		,								
	Enter			Minimum	Percent	Percent					
	Enter Percent Cement's Enter Desired			Cement	Cement	FDM					
	Total FDM Target Cement			Factor	to enter on	to enter on					
	Replacement Limestone Factor	Cement	Total FDM	to enter on	FDM & Admix	FDM & Admix					
	Note 2 Content (%) (cwt)	(lbs/cu yd)	(lbs/cu yd)	Variables tab	tab	tab Note 1					
	25.0 10.0 5.70	438	132	5.70	76.9%	23.1%					
	Portland Cement Content (lbs/cu y	i): 395									

OPTION 3 CASE STUDY	Extending the case given for Option 1 above: say that because of a breakdown at the processing plant your slag supply is restricted, you've decided you minimize replacement while still meeting the 25% minimum required for ASR mitigation.											
	After entering the necessary inputs into the spreadsheet, you see that you'll now need about 128 lbs/yd ³ of GGBF slag, which works out to about 15 lbs/yd ³ less than before (a 10% reduction).											
	3) If wanting t	o do both 1 an	d 2:									
		Enter										
		Desired	Enter					Minimum	Percent	Percent		
		Portland	Cement's	Enter Percent				Cement	Cement	FDM		
		Cement	Target	Total FDM		0	THEFT	Factor	to enter on	to enter on		
		Content	Limestone	Replacement		Cement	Total FDM	to enter on	FDM & Admix	FDM & Admix		
		(Ibs/cu ya)	Content (%)	Note 2		(IDS/CU ya)	(Ibs/cu ya)	variables tab	tab	tab Note 1		
		385	10.0	25.0		428	128	5.56	76.9%	23.1%		
			Portlan	d Cement Conte	ent (Ibs/cu yd):	385						

Note 1: Derivation of formula to calculate FDM replacement based only on the portland cement content of a Type IL cement.

Variables:Z is Cement Factor (i.e., total cementitious) in cwt/yd³
z is total cementitious content in lbs/yd³
x is Type IL cement content in lbs/yd³
y is FDM content in lbs/yd³
p is portland cement content in lbs/yd³
L is limestone content in lbs/yd³
l is nominal percent (%) limestone in the Type IL cement
r is replacement rate in percent (%)

Known: $z = Z \times 100 = x + y$ x = p + L $L = x \left(\frac{l}{100}\right)$ $\frac{r}{100} = \frac{y}{p+y}$

Derivation: Simplify and rearrange the above equations to be in terms of known variables (i.e., z, l, r) and only one unknown variable (e.g., x).

$$\begin{aligned} x &= p + L \\ p &= x - L \\ \text{Because } L &= x \left(\frac{l}{100}\right), \text{ then } p &= x - x \left(\frac{l}{100}\right) = x \left(1 - \frac{l}{100}\right) = x \left(\frac{100 - l}{100}\right) \\ \hline \frac{r}{100} &= \frac{y}{p + y} \\ y &= \frac{r}{100} \left(p + y\right) = \frac{yr}{100} + \frac{pr}{100} \\ y &= \frac{yr}{100} = y \left(1 - \frac{r}{100}\right) = y \left(\frac{100 - r}{100}\right) \\ y &= \frac{\frac{pr}{100}}{100} / \frac{(100 - r)}{100} = \frac{pr}{100} \left(\frac{100}{100 - r}\right) = \frac{pr}{100 - r} \\ \text{Because } p &= x \left(\frac{100 - l}{100}\right), \text{ then } y &= x \left(\frac{100 - l}{100}\right) \left(\frac{r}{100 - r}\right) = x \left(\frac{r}{100}\right) \left(\frac{100 - l}{100 - r}\right) \\ z &= x + y \\ z &= x + x \left(\frac{r}{100}\right) \left(\frac{100 - l}{100 - r}\right) = x \left[1 + \frac{r}{100} \left(\frac{100 - l}{100 - r}\right)\right] \\ \text{OR } x &= Z \times 100 \div \left[1 + \frac{r}{100} \left(\frac{100 - l}{100 - r}\right)\right] \end{aligned}$$

2) If wanting to minimize FDM replacement:

In this case, you are wanting to calculate FDM replacement based only on the amount of portland cement in your mix. With respect to ASR mitigation, this will still meet the intent of Mixture Option 2 (Article 1020.05(d)(2)b of the Standard Specifications) as long as the "Percent Total FDM Replacement" entered meets the minimums specified (e.g., 25.0% if using fly ash, GGBF slag, or a combination thereof).

Enter Percent Total FDM Replacement Note 2	Enter Cement's Target Limestone Content (%)	Enter Desired Cement Factor (cwt)		Cement (bs/cu yd)	Total FDM (lbs/cu yd)	Minimum Cement Factor to enter on Variables tab	Percent Cement to enter on FDM & Admix tab	Percent FDM to enter on FDM & Admix tab Note 1
25.0	10.0	5.70] [438	132	5.70	76.9%	23.1%
Portland Cement Content (lbs/cu yd):				395				