PCC MIX DESIGN SOFTWARE TUTORIAL

Version 2.6

!!! IMPORTANT !!! This spreadsheet utilizes macros.
For a version without macros, please use Version X1.1.

General

This spreadsheet is designed to calculate and report PCC mix designs for submittal to IDOT. The spreadsheet is comprised of data inputs based on the mix design methodology provided in the PCC Level III Technician course manual.

Buttons are provided for ease of navigation, and their use is recommended as they ensure proper operation throughout the design process. Using the worksheet tabs, found at the bottom of the Excel screen, will also work.

The blue-shaded areas are cells which require data input, green-shaded areas are optional (unless required by your District), and white cells are calculation fields, which are protected from accidental overwriting.

Throughout the spreadsheet, comments have been interspersed to offer hints on where to find relevant information. To view comments, hold the cursor over the red tags found in the upper righthand corner of commented cells, as shown below. These comments generally refer to sections of the Course Manual; however, it should be noted that the Department's Standard Specifications and Special Provisions take precedence.

Figure 1. Example of a comment; note red flag, which indicates the cell has a comment.

Tutorial Mix Design

This tutorial also includes notes for how to input the example mix design discussed in Section 2.8 of the Course Manual. If you follow the notes in order as they are presented herein, you should successfully create a basic PCC paving mix design while also being introduced to all of the spreadsheet's functions and capabilities.

Step 1. Design Information

The Design Information page is important to establish the who-what-where of the mix design. This is where the designer decides in which units of measure the mix will be designed, what type of concrete it is, for what Classes of concrete it is valid, and those responsible for the mix design.

Fit to Screen [button]: Click this button to optimize each page of the mix design spreadsheet for viewing on your screen.

English/Metric [toggle]: Toggle button for selecting the units of measure for the mix design's inputs. All data inputs will have to be entered in the chosen units of measure. However, the design will be reported in both units of measure on the different final mix design reports generated.

```
EXAMPLE
Assuming most of us are more comfortable using English units of measure (lbs, yd}\mp@subsup{}{}{3},\mathrm{ etc.),
PROBLEM
the example mix design will be designed using English units.
Click on the ENGLISH toggle button.
```

Mix Design No.:
Alphanumeric designation (up to nine characters in length). This is the Producer's or Contractor's self-designated mix design number; this is not the mix design number assigned by IDOT, see "IDOT Mix Design No." below.

EXAMPLE
Because this is the Producer's or Contractor's mix design number, any reasonably succinct PROBLEM and unique identifier can be used here. For this example, we will use PMC0001PV (i.e., Pave Masters Co. paving mix \#1).

IDOT Mix Design No.: Alphanumeric mix design number reported to the Department's CMMS database. This number will be assigned by your District to an approved mix design.

```
EXAMPLE Because this mix design number is assigned by the District upon approval, this cell reads
PROBLEM
[TBD by IDOT].
```

Date Created: \quad The date the mix design was created.

Step 1. Design Information (continued)

Concrete Code: Select the appropriate material code. This code is used by the Department's CMMS database to designate the type of concrete.

EXAMPLE	Because this mix will utilize Type IL portland cement and Class C fly ash, the appropriate
PROBLEM	Concrete Code to select from the drop-down list is $\mathbf{2 1 6 0 5}$.

Class:

Select up to five Classes of concrete.

| EXAMPLE | Because this mix will be used for a continuously reinforced portland cement concrete |
| :--- | :--- | PROBLEM pavement, the appropriate Class to select is PV.

Responsible Location: District responsible for mix design's use; for example, " 91 " for District 1.

EXAMPLE	Select one of the nine IDOT Districts with which you typically work; for example, select
PROBLEM	91 if you often work with District 1 in the Chicago area.

Company Name: \quad Name of producer/contractor/consultant responsible for creating the mix design.
Location: \quad Nearest municipality to Company.
Designer: \quad Name, phone number, and email of person that created the design.
Mix Producer: \quad IDOT-assigned producer number and name of producer.

Step 2. Design Variables

The Design Variables page is were the designer first begins to determine the mix design's parameters that factor into the mix design calculations.

Batch Size: \quad Batch size in cubic yards (cubic meters). All mix designs are created per $1 \mathrm{yd}^{3}\left(1 \mathrm{~m}^{3}\right)$.
Cement Factor: \quad Cement quantity in hundredweight per cubic yard (kilograms per cubic meter).
EXAMPLE \quad From Table 2.2.1 in the Course Manual, the cement factor for Class PV concrete PROBLEM from a central mixed plant is $5.65 \mathrm{cwt} / \mathrm{yd}^{3}$.
Also, from Section 2.2.2, a cement factor reduction of $\mathbf{0 . 3 0} \mathbf{~ c w t} / \mathbf{y d}^{3}$ can be applied because a water-reducing admixture will be used.
Thus, the final, adjusted cement factor is reduced to $5.35 \mathrm{cwt} / \mathrm{yd}^{3}$.

Mortar Factor:

Refer to Table 2.7.2.2 Design Mortar Factor in the Course Manual.

EXAMPLE	From Table 2.7.2.2 in the Course Manual, a mortar factor can be selected for Class PROBLEM
	PV concrete.
	Enter $\mathbf{0 . 8 3}$ as a reasonable starting point.

Target Air Content:

Percentage of entrained air in the concrete to improve durability. Refer to Table 2.6 Air Content in the Course Manual.

EXAMPLE	From Table 2.6 in the Course Manual, the midpoint of the air content range for PROBLEM
Class PV concrete is 6.5%.	

Step 2. Design Variables (continued)

Determine Water Content

First, using the toggle switch, select either the w/c Ratio Method or the Basic Water Requirement Method.
The w/c Ratio Method will determine water content based on the w/c ratio entered and the total content of cement and finely divided minerals. No water adjustment needs to be entered as it will be back-calculated based on the w/c ratio and assumed aggregate water requirements (see Note).

Note: If the "w/c Ratio Method" is selected, the spreadsheet will assume a Type B fine aggregate with basic water requirement of $5.3 \mathrm{gal} / \mathrm{cwt}(0.44 \mathrm{~L} / \mathrm{kg})$.

Alternatively, the Basic Water Requirement method requires the fine and coarse aggregate water requirements, as well as percent water reduction. Refer to Appendix Q Basic and Adjusted Water Requirement Method in the Course Manual for more information. See next page for when using the Basic Water Requirement method.

If the W/C Ratio Method has been selected:

Enter W/C Ratio:
When w/c Ratio Method is toggled, this field appears. Enter the target w/c ratio that the design water content will be based on; for example, 0.42.

> | EXAMPLE | In this example, per Table $\mathbf{2 . 5}$ in the Course Manual, the maximum w/c for |
| :--- | :--- |
| PROBLEM | Class PV concrete is $\mathbf{0 . 4 2 .}$ |

Step 2. Design Variables (continued)

If the Basic Water Requirement Method has been selected:

Determine Water Content:

\square A. w/c Ratio Method B. Basic Water Req.

FA Type
" B " Combination of rounded and angular particles $\boldsymbol{\nabla}$
FA Water Req.

CA Water Req.
0.2

Water Reduction

Water Adjustment Help

FA Type: \quad Select fine aggregate type.

> | EXAMPLE | |
| :--- | :--- |
| PROBLEM | $\begin{array}{l}\text { Assume this mix will utilize a Type "B" fine aggregate, select B from the } \\ \text { drop-down list. }\end{array}$ |

FA Water Req.: \quad Water requirement for fine aggregate in gallons per hundredweight (liters per kilogram) of cement and finely divided minerals. This value is based on the type of fine aggregate.

EXAMPLE \quad Assuming this mix will utilize a Type "B" fine aggregate, enter $\mathbf{5 . 3} \mathbf{~ g a l / c w t . ~}$ PROBLEM

CA Water Req.:
Water requirement for coarse aggregate in gallons per hundredweight (liters per kilogram) of cement and finely divided minerals material. This value is based on the type of coarse aggregate.

\section*{| EXAMPLE | Because this mix will utilize a crushed stone, enter $\mathbf{0 . 2}$ gal/cwt. |
| :--- | :--- |
 PROBLEM}

Water Reduction:
Percentage of water adjustment (typically a reduction) accounting for various factors, such as admixture use, cement and finely divided mineral content, air content, etc. Note that because this input is referred to as a "reduction," the value entered may seem counterintuitive; that is, a water reduction should be entered as a positive value, while a water addition should be entered as a negative value. For example, enter " 10.0 " for a 10 percent water reduction, and enter "-10.0" for a 10 percent water addition.

For help determining a reasonable water adjustment, refer to Appendix Q Basic and Adjusted Water Requirement Method in the Course Manual.

EXAMPLE PROBLEM

Because this mix will utilize a water-reducing admixture to provide a target water reduction of 10%, enter $\mathbf{1 0 . 0}$.

Note: If for some reason this mix needed a 10 percent water addition, you would have entered -10.0.

Step 3. Aggregate Information
The Aggregate Information worksheet is where the designer enters all fine and coarse aggregate information.

Material:
Aggregate material codes. Coarse and fine aggregates may be entered in any order, except as required by your District.

| EXAMPLE |
| :--- | :--- |
| PROBLEM | | - Fine aggregate: Enter 027FA01 as given in the Course Manual. This material code |
| :--- |
| is for an "A" quality natural sand meeting the gradation criteria for FA 1 per Article |
| 1003.01 (c). |

Producer Number: Aggregate producer number. This field is required for all aggregate components.
Producer Name: Aggregate producer name.
Specific Gravity: \quad Saturated Surface Dry (SSD) specific gravity of each aggregate.
EXAMPLE The example problem as given in the Course Manual indicates that the saturated surfacePROBLEM dry specific gravities for the fine and coarse aggregate components are $\mathbf{2 . 6 6}$ and $\mathbf{2 . 6 8}$, respectively.

Percent blend for aggregate components. If only using one coarse aggregate and one fine aggregate material, enter " 100 " for each. On the other hand, if blending coarse aggregate materials, say, CA 11 and CA 16 at 75 and 25 percent, respectively, enter a " 75 " for the CA 11 and a " 25 " for the CA 16. Similarly, if blending fine aggregate materials. Do not blend coarse and fine aggregate, except as noted below for CAM II:

Note for CAM II designs only-Recommended \% Blend of coarse-to-fine aggregate: 5050 when using CA 7 , CA 9 , or CA 11; 75-25 when using CA 6 ; and 100-0 (i.e., no fine aggregate) when using CA 10 . For example, when using CA 6 and FA 1 , enter " 75 " for the CA 6 and " 25 " for the FA 1.

> | EXAMPLE | $\begin{array}{l}\text { Because this mix is utilizing one coarse aggregate component and one fine aggregate } \\ \text { component (and the mix is not CAM II), enter } \mathbf{1 0 0} \text { for coarse aggregate and } \mathbf{1 0 0} \text { for fine } \\ \text { aggregate. }\end{array}$ |
| :--- | :--- |

Step 3. Aggregate Information (continued)

Coarse Aggregate Voids

Refer to the District office verifying your mix design for guidance on what value to use for Voids. For example, some Districts may provide a value for general aggregate types, such as " 0.36 " for gravels, or one value for all aggregates.

Important: Enter "1.00" for any mix design that does not contain coarse aggregate.

EXAMPLE	The example problem as given in the Course Manual notes that the Voids for the
PROBLEM	coarse aggregate is 0.39 .

Step 4. Finely Divided Minerals \& Admixtures Information

This worksheet is where the designer enters all information pertaining to cement and finely divided minerals, as well as chemical admixtures (e.g., air-entraining water-reducing admixtures, etc.).

Material:
Cement and finely divided mineral (FDM) material codes. Each line is dedicated to a specific material: Line 1 for cement, Line 2 for fly ash, Line 3 for GGBF slag, and Line 4 for miscellaneous (e.g., microsilica, high-reactivity metakaolin, etc.).

EXAMPLE PROBLEM

Because this mix will utilize a Type IL cement and Class C fly ash, Lines 1 and 2 will be used.

- Cement: select 37708 Type IL, Limestone from the drop-down list.
- Fly ash: select $\mathbf{3 7 8 0 1}$ Fly Ash Class C from the drop-down list.

Producer Number: Material producer number. This field is required for all finely divided minerals.
Producer Name: Material producer name.
Specific Gravity: Specific gravity of each material. The specific gravity of cement is normally assumed to be 3.15 for ordinary portland cement or portland-limestone cement. However, for portlandpozzolan or portland-slag cements, this value should be verified with the District. Specific gravity values for finely divided minerals can be obtained from the Qualified Producer List of Finely Divided Minerals.

EXAMPLE PROBLEM

The example problem as given in the Course Manual notes that the specific gravity for the fly ash component is $\mathbf{2 . 6 1}$.
The specific gravity of portland-limestone cement is assumed to be 3.15

Step 4. Finely Divided Minerals \& Admixtures Information (continued)

Percent Blend: \quad The blend percentage must be entered for each material, totaling 100. For example, when blending fly ash and cement at 20 and 80 percent, respectively, enter " 20 " for the fly ash and " 80 " for the cement.

Replacement Ratio:
(Optional) Enter the replacement ratio for each finely divided mineral, if applicable. If left blank, the default value of " 1.00 " will be used.

Step 5. Admixtures Information

Material Code: \quad Enter admixture material codes here. The 5-digit material code for admixtures can be found on the Approved/Qualified Product List of Concrete Admixtures.

Admixture Type: \quad Choose admixture type.
Product Name: \quad Enter admixture product's name.
Remarks: Enter key information regarding proposed dosage rates, dosing procedures, etc.

Step 6. General Mixture Remarks

Remarks: Enter any pertinent information not already covered. When required to mitigate for alkalisilica reaction (ASR), indicate the mixture option selected.

EXAMPLE PROBLEM	Because we are required to mitigate for alkali-silica reaction, we must indicate the mixture option selected. Enter ASR Mix Option 2, $\mathbf{2 5 \%}$ \% fly ash.

Latex Admixture Information (only required for mix designs using a latex admixture)

Batch Dosage:	Enter latex admixture dosage in terms of gallons per cubic yard (liters per cubic meter).
Specific Gravity: Enter manufacturer's specific gravity for the latex admixture. \% Solids: Enter manufacturer's percent solids for the latex admixture.	

Design Report

Given the inputs, the mix design proportions are calculated and reported. Three design reports are generated: one in English units of measure, one in metric (SI), and one formatted for Departmental prior to submittal to CMMS.

ENGLISH UNITS DESIGN REPORT

METRIC UNITS DESIGN REPORT

CMMS DESIGN REPORT

Note for IDOT Users: The CMMS Report has four input fields to be completed by the District when approving a mix design. Once a mix design is approved, click the "Submit to CMMS" button to export the file to CMMS.

ADDENDUM

Optional Step when using Type IL Cement
On the Design Variables tab/page, you will now find a link/button to a new tab, "Cement Factor (Optional)." This new, optional step has been added for the mix designer's consideration in light of experiences some producers have had since transitioning to Type IL portland-limestone cement.

The options provided should not be used for non-blended cements (e.g., Type I/II, III).

Three options are provided that the mix designer may find useful:

- Option 1: Ensuring a certain portland cement content is included in your mix. In this case, you the mix designer want a certain amount of portland cement in your mix, taking into account that not all of a Type IL cement is made up of portland cement. This option may be of interest for lean mixes (i.e., low total cementitious content), particularly those that include finely divided minerals (e.g., fly ash, slag). For 'straight cement' mixes, IDOT's current minimum cement factors ought to have no problem ensuring sufficient portland cement is included in the mix. For example., even the leanest $535-\mathrm{lbs} / \mathrm{yd}^{3}$ mix using a Type IL(15) cement would have about $455 \mathrm{lbs} / \mathrm{yd}^{3}$ portland cement; historically, the least amount of portland cement in a conventional IDOT PCC design was about $400 \mathrm{lbs} / \mathrm{yd}^{3}$.
Please note that the premise of this option is not intended to imply that the Department believes there is indeed a minimum portland cement content necessary to achieve certain desired performance results. Nor is it intended to imply that to have performance equivalent to a mix previously designed with Type $1 / I I$ cement, you should factor out any of the added limestone. This option is purely intended to provide a simple, consistent means to calculate the amount of Type IL cement necessary to ensure a designerspecified amount of portland cement is included in a mix. This option (and similarly, option 3) is provided to acknowledge that some mix designers may have found in their experience that there is a minimum portland cement content they need due to different cement sources, types of mixes and applications, plant configurations, etc.
- Option 2: Wanting to minimize FDM replacement when using a blended cement. In this case, you the mix designer wish the FDM replacement to be based only on the portland cement portion of the Type IL cement.
For example, you have a $605 \mathrm{lbs} / \mathrm{yd}^{3}$ Class BS mix using Type $\mathrm{IL}(10)$ cement and 25% GGBF slag. Previously, when calculating the replacement of a Type I/II cement, it was simply 25% of 605 , resulting in approximately $150 \mathrm{lbs} / \mathrm{yd}^{3}$ slag and about $455 \mathrm{lbs} / \mathrm{yd}^{3}$ of cement. However, if trying to base the replacement on only the portland cement portion of a Type IL cement, the calculation is more complicated (see Note 1). Using the spreadsheet for this example, you will find that your mix can offset the slag replacement, thereby increasing the cement content, by about $10 \mathrm{lbs} / \mathrm{yd}^{3}$.
- Option 3: Combining options 1 and 2. This case simply allows you the mix designer to both specify a certain portland cement content is included in your mix as well as minimize any FDM replacement by calculating it based only on your specified portland cement content.

CASE STUDY EXAMPLES

OPTION 1 CASE STUDY

Say you typically mitigate for ASR using 25% GGBF slag. For the leanest of your central-mixed paving designs (i.e., $535 \mathrm{lbs} / \mathrm{yd}^{3}$ total cementitious), if using a Type IL(10) cement, the portland cement content is $361 \mathrm{lbs} / \mathrm{yd}^{3}$. However, based on the performance of a number of your designs, you've decided your mixes need at least $385 \mathrm{lbs} / \mathrm{yd}^{3}$ portland cement to perform to your expectations (e.g., rate of early and/or ultimate strength gain, time to set, time to saw joints, etc.).
After entering the necessary inputs into the spreadsheet, you see that you'll need $428 \mathrm{lbs} / \mathrm{ld}^{3}$ Type IL(10) cement to obtain $385 \mathrm{lbs} / \mathrm{yd}^{3}$ portland cement. And because the cement portion of your total cementitious has increased, the amount of slag needed has also increased to maintain the 25% FDM replacement, resulting in a total cementitious of $570 \mathrm{lbs} / \mathrm{yd}^{3}$.

```
1) If wanting a minimum portland cement content:
In this case, you are wanting to ensure a certain minimum amount of portland cement is included in your mix, i.e., taking into account that not all of a blended cement is made up of portland cement.
```


OPTION 2 CASE STUDY

Say your typical Class SI concrete design is $570 \mathrm{lbs} / \mathrm{ld}^{3}$ total cementitious with 25% Class F fly ash replacement to mitigate for ASR. In an effort to manage your fly ash demand due a run of shortages and restrictions, you've decided to base the percent replacement on only the portland cement portion of your Type IL(10).
After entering the necessary inputs into the spreadsheet, you see that you'll now need about 132 $\mathrm{lbs} / \mathrm{yd}^{3}$ of fly ash. This works out to about $10 \mathrm{lbs} / \mathrm{yd}^{3}$ less than before (an 8% reduction).
2) If wanting to minimize FDM replacement:

In this case, you are wanting to calculate FDM replacement based only on the amount of portland cement in your mix. With respect to ASR mitigation, this will still meet the intent of Mixture Option 2 (Article 1020.05(d)(2)b of the Standard Specifications) as long as the "Percent Total FDM Replacement" entered meets the minimums specified (e.g., 25.0% if using fly ash, GGBF slag, or a combination thereof).

Enter Percent Total FDM Replacement Note 2	Enter Cement's Target Limestone Content (\%)	Enter Desired Cement Factor (cwt)	Cement (lbs/cu yd)	Total FDM (lbs/cu yd)	Minimum Cement Factor to enter on Variables tab	Percent Cement to enter on FDM \& Admix tab	Percent FDM to enter on FDM \& Admix tab Note 1
25.0	10.0	5.70	438	132	5.70	76.9\%	23.1\%
Portland Cement Content (lbs/cu yd):			395				

OPTION 3 CASE STUDY

Extending the case given for Option 1 above: say that because of a breakdown at the processing plant your slag supply is restricted, you've decided you minimize replacement while still meeting the 25% minimum required for ASR mitigation.

After entering the necessary inputs into the spreadsheet, you see that you'll now need about 128 $\mathrm{lbs} / \mathrm{yd}{ }^{3}$ of GGBF slag, which works out to about $15 \mathrm{lbs} / \mathrm{yd}^{3}$ less than before (a 10% reduction).

3) If wanting to do both 1 a Enter Desired Portland Cement Content (lbs/cu yd)	2 : Enter Cement's Target Limestone Content (\%)	Enter Percent Total FDM Replacement Note 2	Cement (lbs/cu yd)	Total FDM (lbs/cu yd)	Minimum Cement Factor to enter on Variables tab	Percent Cement to enter on FDM \& Admix tab	Percent FDM to enter on FDM \& Admix tab Note 1
385	10.0	25.0	428	128	5.56	76.9\%	23.1\%
Portland Cement Content (lbs/cu yd):			385				

Note 1: Derivation of formula to calculate FDM replacement based only on the portland cement content of a Type IL cement.

Variables: $\quad Z$ is Cement Factor (i.e., total cementitious) in $\mathrm{cwt}^{2} \mathrm{yd}^{3}$
z is total cementitious content in lbs $/ \mathrm{yd}^{3}$
x is Type IL cement content in $\mathrm{lbs} / \mathrm{yd}^{3}$
y is FDM content in lbs/yd ${ }^{3}$
p is portland cement content in lbs/yd ${ }^{3}$
L is limestone content in lbs/yd ${ }^{3}$
l is nominal percent (\%) limestone in the Type IL cement
r is replacement rate in percent (\%)
Known: $\quad z=Z \times 100=x+y$
$x=p+L$
$L=x\left(\frac{l}{100}\right)$
$\frac{r}{100}=\frac{y}{p+y}$
Derivation: Simplify and rearrange the above equations to be in terms of known variables (i.e., z, ℓ, r) and only one unknown variable (e.g., x).
$x=p+L$
$p=x-L$
Because $L=x\left(\frac{l}{100}\right)$, then $p=x-x\left(\frac{l}{100}\right)=x\left(1-\frac{l}{100}\right)=x\left(\frac{100-l}{100}\right)$
$\frac{r}{100}=\frac{y}{p+y}$
$y=\frac{r}{100}(p+y)=\frac{y r}{100}+\frac{p r}{100}$
$1-\frac{n}{100}=\frac{100}{100}-\frac{n}{100}=\frac{100-n}{100}$
$\frac{p r}{100}=y-\frac{y r}{100}=y\left(1-\frac{r}{100}\right)=y\left(\frac{100-r}{100}\right)$
$y=\frac{p r}{100} /\left(\frac{100-r}{100}\right)=\frac{p r}{100}\left(\frac{100}{100-r}\right)=\frac{p r}{100-r}$
Because $p=x\left(\frac{100-l}{100}\right)$, then $y=x\left(\frac{100-l}{100}\right)\left(\frac{r}{100-r}\right)=x\left(\frac{r}{100}\right)\left(\frac{100-l}{100-r}\right)$
$z=x+y$
$z=x+x\left(\frac{r}{100}\right)\left(\frac{100-l}{100-r}\right)=x\left[1+\frac{r}{100}\left(\frac{100-l}{100-r}\right)\right]$
$x=z \div\left[1+\frac{r}{100}\left(\frac{100-l}{100-r}\right)\right]$
$\mathrm{OR} x=Z \times 100 \div\left[1+\frac{r}{100}\left(\frac{100-l}{100-r}\right)\right]$
2) If wanting to minimize FDM replacement:

In this case, you are wanting to calculate FDM replacement based only on the amount of portland cement in your mix. With respect to ASR mitigation, this will still meet the intent of Mixture Option 2 (A)ticle 1020.05(d)(2)b of the Standard Specifications) as long as the "Percent Total FDM Replacement" entered meets the minimums specified (e.g, 25.0% if using fly ash, GGBF slag, or a combination thereof).

