HYDRAULIC REPORT

PROJECT ROUTE:

Interstate 55 (Stevenson Expressway)

SECTION:

n/a

LIMITS:

Station 360+00 to Station 362+00

WATERWAY CROSSING:

West Branch Sawmill Creek

MUNICIPALITY/COUNTY:

Darien/DuPage County

JOB NUMBER:

P-91-762-10

EXISTING STRUCTURE NO.: PROPOSED STRUCTURE NO.:

n/a n/a

Prepared for:

Illinois Department of Transportation

201 West Center Court Schaumburg, Illinois 6019-1096 Job No. P-91-762-10

Prepared by:

Christopher B. Burke Engineering, Ltd.

9575 West Higgins Road Rosemont, IL 60018 847-823-0500

CBBEL Project No. 11-0203.00001

FINAL February 2017

Ilene A. Dailey, PE, CFM idailey@cbbel.com

Illinois Registered Professional Engineer

No. 062-047420

TABLE OF CONTENTS

SECTION 1 NARRATIVE

- a. Project Description
- b. Description of Existing Structure and Floodplain
- c. Field Observations
- d. Historical Observations/Records
- e. Other Studies and Affected Agencies
- f. Datum Correlation
- g. Sensitive Flood Receptors
- h. Hydrologic Methodology
- i. Hydraulic Methodology
- j. Summary of Existing Conditions Analysis
- k. Summary of Natural Conditions Analysis
- I. Proposed Structure Analysis
- m. Scour Analysis
- n. Compensatory Storage
- o. Permit Requirements
- p. Freeboard/Clearance
- q. Conclusion
- SECTION 2 WATERWAY INFORMATION TABLES AND SUPPORTING CALCULATIONS
- SECTION 3 HYDRAULIC REPORT DATA SHEETS AND CHECKLIST
- SECTION 4 LOCATION MAP

USGS HYDROLOGIC INVESTIGATIONS ATLAS

REGULATORY FLOOD MAP

- SECTION 5 PHOTOGRAPHS
- SECTION 6 HYDROLOGY
- SECTION 7 STREAMBED PROFILE
- SECTION 8 ROADWAY PLAN AND PROFILE
- SECTION 9 STREAM CROSS SECTION LOCATION MAP

STREAM CROSS SECTION PLOTS

- SECTION 10 CULVERT LAYOUT / PLAN DRAWING PLOTS
- SECTION 11 CULVERT CROSS SECTION PLOTS EXISTING CONDITIONS
- SECTION 12 CULVERT CROSS SECTION PLOTS PROPOSED CONDITIONS

SECTION 13 HYDRAULIC ANALYSES

- a. Baseline (FEMA) WSP-2 Model (NGVD 1929)
- b. Design Existing Conditions
- c. Design Natural Conditions
- d. Proposed Conditions

SECTION 14 SCOUR ANALYSIS

SECTION 15 RIPRAP SIZING

SECTION 16 FLOODWAY PERMIT SUMMARY FORM (District 1) RELATED EXHIBITS AND FILL CALCULATIONS

SECTION 17 COMPENSATORY STORAGE

SECTION 18 SURVEY NOTES

SECTION 19 ESTIMATED WATER SURFACE ELEVATION (EWSE) DATA

SECTION 20 CORRESPONDENCE NOTES

SECTION 21 CD WITH PROJECT FILES

Tao 1

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 1
	NARRATIVE
CB	

SECTION 1

NARRATIVE

A. PROJECT DESCRIPTION

The Illinois Department of Transportation (IDOT) is preparing a Preliminary Engineering and Environmental Study (Phase 1) for the Interstate 55 (I-55) Managed Lanes Project. The project study area includes the I-55 corridor (Stevenson Expressway) from I-355 to I-90/94 at the east.

This project is proposed to add one managed lane in each direction within the existing median of the expressway. The term 'Managed Lanes' includes the implementation of travel lanes for High Occupancy Vehicle (HOV), High Occupancy Toll (HOT), Congestion Pricing, as well as other concepts to improve the overall flow of traffic. This project has been identified in the Chicago Metropolitan Area for Planning (CMAP) Go To 2040 Plan as a priority project.

This report requested by the Illinois Department of Transportation is to evaluate the existing culvert structure carrying Interstate 55 (Stevenson Expressway) over West Branch Sawmill Creek located in DuPage County, Illinois. The subject box culvert is a 5' (W) X 4' (H) single reinforced concrete box culvert located between Cass Avenue and Lemont Road and crosses I-55 approximately 2400 feet west of Cass Avenue. The total drainage area to the culvert is approximately 0.75 square miles. Refer to Exhibit 4.1 for a General Location map and Exhibit 4.2 for the USGS Hydraulic Atlas.

B. DESCRIPTION OF EXISTING STRUCTURE AND FLOODPLAIN

SITE DESCRIPTION

The upstream limit of the study is located approximately 1500' north of the I-55 crossing. West Branch Sawmill Creek (West Branch) passes through an open dense vegetated area in Darien, Illinois. West Branch flows under three structures upstream of the subject I-55 crossing. The first structure is a 3.5' diameter RCP culvert under a golf course access path, approximately 800' upstream of the subject structure. Approximately 150' downstream of the access drive is an old concrete weir, also located on the golf course. This structure was modeled as an inline weir in the regulatory WSP-2. Based on site survey and photographs, West Branch now completely bypasses the weir structure, which no longer functions as a weir. The old weir is now modeled as part of a cross section. Approximately 250' downstream of the old weir, West Branch flows through a 5' (W) X 4' (H) single box culvert crossing beneath North Frontage Road. Refer to Exhibit 4.1 for the general project location.

Downstream of I-55, the Creek begins to slightly meander through unincorporated DuPage County. The model extends an additional 1000' downstream of the subject structure via

surveyed cross sections and another 2000' via regulatory cross sections. Approximately 1000' downstream of the crossing West Branch merges with Wards Creek.

In general the floodplain is constantly comprised of densely vegetated floodplain with a well-defined open channel. Refer to Section 5 for photos of the floodplain and structures.

STRUCTURE DESCRIPTION

The structure carrying I-55 over West Branch Sawmill Creek was originally constructed as part of Project F.A.I. Route 3 Section 22-2 Project I-03-6(7), the construction of the multilane expressway currently referred to as I-55, in 1957. Historic plan excerpts are provided in Section 8.

The existing structure is a cast-in-place reinforced concrete box culvert designated as a special culvert. The overall length of the existing structure is shown to be 232' measured from face of headwall to face of headwall. The opening dimensions are 5'-0" wide x 4'-0" high.

The culvert is not skewed to the roadway and carries three (3) 12'-0" travel lanes, a 19-0" inside shoulder, and an 11'-0" outside shoulder in each direction of I-55. In addition, the culvert carries the adjacent South Frontage Road over West Branch. The frontage road is comprised of a 2-lane section with shoulders.

FLOODPLAIN DESCRIPTION

At the I-55 crossing, West Branch Sawmill Creek drains approximately 0.75 square miles of area and the watershed is comprised mainly of open land and residential land. The West Branch channel is found to be between 20' and 40' in width and has a fairly consistent cross section throughout the study limits. There is a mapped Federal Emergency Management Agency (FEMA) floodplain for West Branch, extending upstream and downstream of the subject crossing. There is no floodway at the I-55 crossing over West Branch, but upstream of the North Frontage Road there is regulatory floodway.

Downstream of I-55 and upstream of North Frontage Road, the West Branch floodplain is mapped as Zone AE by FEMA with defined base flood elevations. Between I-55 and North Frontage Road the floodplain is mapped as Zone A without defined base flood elevations. The Flood Insurance Rate Map (FIRM) Panels No. 17043C0908H and No. 17043C01002H for DuPage County, Illinois and Incorporated Areas, effective December 16, 2004 are included in Section 4 as Exhibit 4.3.

C. FIELD OBSERVATIONS

West Branch Sawmill Creek field survey was performed by CBBEL in December 2012. The stream banks are composed of some vegetation along with some exposed rocks. The streambed consists of exposed dirt, with very little rock or stone protecting the streambed from erosion. Refer to Section 5 for a Photograph Location Map and Photos.

Both upstream and downstream of the crossing the floodplain is comprised of dense brush, with a well-defined channel.

D. HISTORICAL OBSERVATIONS/RECORDS

There are no records of flooding on the I-55 pavement at the West Branch Sawmill Creek. However, pavement flooding was reported nearby at I-55 and Cass Avenue during the July 1990, June 1993, and June 1996 storm events. This flooding appears unrelated to West Branch. Pavement flooding records are included in Section 20.

The 1966 Hydrologic Investigations Atlas, HA-149 (Sag Bridge), prepared by the United States Geological Survey in cooperation with the Northeastern Illinois Metropolitan Area Planning Commission, does not have any flood profiles for West Branch. Therefore, there is no recorded all-time high profile for West Branch Sawmill Creek. Based on the HA-149 mapping, the historic 1961 flood did not overtop I-55, and based on contour intervals, the historic flood elevation is approximately 695 feet (NGVD 29). The HA is provided as Exhibit 4.2 in Section 4.

There are no current and functioning stream gages located in the project area. Stream gage USGS 05533400 SAWMILL CREEK NEAR LEMONT, IL is identified to be the only gage found on Sawmill Creek and is well outside of the project vicinity. The drainage area at the gage is 13.00 square miles, whereas the drainage area at the project location is 0.75 square miles.

The following documents were utilized in developing this report:

- USGS Hydrologic Atlas HA-149, Sag Bridge Quadrangle, Illinois, 1967.
- Flood Insurance Study for DuPage County, Illinois and Incorporated Areas, 17043CV000A, March 2007.
- Flood Insurance Rate Map for DuPage County, Illinois and Incorporated Areas, Panel No. 17043C0908H, effective December 16, 2004.
- Flood Insurance Rate Map for DuPage County, Illinois and Incorporated Areas, Panel No. 17043C1002H, effective December 16, 2004.

E. OTHER STUDIES & AFFECTED AGENCIES

The Federal Emergency Management Agency (FEMA) Flood Insurance Map (FIRM) numbers 17043C0908H and 17043C01002H for DuPage County, Illinois and Incorporated Areas encompass

the areas upstream and downstream of this crossing. According to these maps the surrounding area directly upstream of this culvert is mapped as Zone A Floodplain and the area downstream is mapped as a Zone AE Floodplain associated with Wards Creek. The FIRM has been provided as Exhibit 4.3.

The FEMA study WSP-2 hydraulic modeling was completed in the 1970s and did include the I-55 crossing on West Branch Sawmill Creek.

F. DATUM CORRELATION

A stream survey was conducted by CBBEL in winter of 2012 with cross sections taken along West Branch. These cross sections were used in the HEC-RAS existing conditions model. Exhibit 9-1 in Section 9 shows the cross section locations and topography along the entire length of the hydraulic modeling. The North American Vertical Datum 1988 (NAVD 88) was used as the basis for the CBBEL survey, topographic mapping, and the hydraulic models used in this report.

The FIS referenced in this report is in NAVD 88, however the original FEMA WSP-2 regulatory model cross-sections were in National Geodetic Vertical Datum of 1929 (NGVD 29). In order to use the information found in the FIS model, a conversion factor of -0.28 feet from NGVD 29 to NAVD 88 was applied. All elevations cited in this report and used in said models have been corrected for this factor. Datum conversion, from the NOAA VERTCON website calculations, have been provided in Section 18.

G. SENSITIVE FLOOD RECEPTORS

Based on the regulatory FEMA data, modeled floodplain, and topographic maps there do not appear to be any sensitive flood receptors upstream of the subject crossing.

H. HYDROLOGIC METHODOLOGY

The source hydrology and hydraulic model was taken from the current FEMA Flood Insurance Study (FIS) for DuPage County, No. 17403CV000H. The FEMA regulatory model titled "DARIEN FLOOD INSURANCE STUDY", prepared by Harza Engineering Company (WSP2 format), dated 1977, is cited to be the underlying analysis referenced in the published FIS. The design discharges identified in the WSP2 model are the regulatory discharges correlated with the published FIS flows and are used as part of the analysis. The flows utilized in the model for West Branch are shown in the following table.

HEC-RAS Cross	Peak Discharge				
Section	10-Year	50-Year	100-Year	500-Year	ОТ
11	149	245	290	420	276
10	178	290	345	495	326
0.1	478	780	923	1290	871

Table H-1 Summary of Discharges

I. HYDRAULIC METHODOLOGY

The model titled "DARIEN FLOOD INSURANCE STUDY" as prepared by Harza Engineering Company (WSP-2 format), dated 1977, is considered to be the regulatory model. This model was used as the baseline information for this study, as well as the source of flows and starting water surface elevations. It should be noted that the published FIS study limits appear to be at the North Frontage Road, yet the source WSP-2 model extends downstream of this point. The published FIS profile does not include the crossing at I-55, but the WSP-2 model does.

A Table comparing the existing conditions water surface elevations between the published FIRM, the WSP-2 model, and the surveyed cross sections is provided at the beginning of Section 13.

The WSP-2 water surface elevations at cross section 0.1 located downstream of the confluence of West Branch with Wards Creek were originally used as the starting water surface elevations (WSEs) for this study. However, when using this location for the starting WSEs, the computed 100-year flood elevation upstream near surveyed cross section 1 was significantly lower than the mapped elevation shown on the FIRM. Therefore, a copy of cross section 1 (named cross section 0.15) was placed at the confluence of the West Branch Sawmill Creek with Wards Creek, and the starting water surface elevations were taken from the Wards Creek flood profile at the confluence. Only the 10- and 100-year flood elevations were published, so these were used to interpolate/extrapolate the 50- and 500-year WSEs. Using this location for the starting WSEs had a slight effect on the tailwater elevations at I-55, but no impact on the WSEs upstream of I-55. The FIS Wards Creek flood profiles and interpolation/extrapolation spreadsheet are provided at the beginning of Section 13.

The ineffective areas at the culverts use the standard ratio of 1:1 for contraction and a computed ratio of 2:1 for expansion based on the guidance in the HEC-RAS Hydraulic Reference Manual, Appendix B, given approximately b/B = 0.25, nob/nc = 1, and a slope shallower than 1'/mile. The expansion ratio of 2:1 is at the conservative end of the range. The applicable table from Appendix B is provided at the beginning of Section 13. Ineffective area limits were determined based on guidance found in Chapters 5 and 6 of the HEC-RAS Hydraulic Reference Manual.

The computed flood profiles go supercritical at surveyed cross section 2 and near critical at surveyed cross section 11. To allow the program to calculate both subcritical and supercritical profiles, the mixed flow regime was selected for computation. The upstream boundary conditions for the supercritical run were the known water surface elevations from the WSP-2 model at cross section 11.5.

An independent evaluation of Manning's 'n' roughness coefficient values for the channel and floodplain was completed for areas that appear to have changed since the FEMA model was prepared. Manning's n-values for the channel and adjacent floodplain were determined based on photographs, aerial photos, survey notes, and field observations. Base values for 'n' were adjusted using the FHWA methodology presented in Chapter 5 of the IDOT Drainage Manual, as follows:

$$n = (n_b + n_1 + n_2 + n_3 + n_4)*m.$$

Typical Channel

The typical main channel consists of a mixture of silt and light rocks, and has minor irregularities, alternates occasionally, negligible obstructions, small vegetation, and minor meandering. Therefore.

$$n = (0.025 + 0.005 + 0.003 + 0.004 + 0.005)*(1) = 0.042$$

Wooded Floodplain

The floodplain consisting of large overgrowth has minor irregularity, minor obstructions, and dense vegetation. Therefore,

$$n = (0.025 + 0.002 + 0 + 0.02 + 0.033)*(1) = 0.08$$

Paved Surface

The floodplain that consists of a paved surface, no overgrowth, has no irregularity, negligible obstructions, and no vegetation. Therefore,

$$n = (0.015 + 0.00 + 0.000 + 0.000) * (1) = 0.015$$

There are five (5) plans included in the HEC-RAS model submitted. A list of the plans, including whether they are used in the WIT, is provided below:

- FIS WSP2 conversion This plan is a straight duplicate of the FIS WSP2 model in NGVD29.
 This plan was not used in the WIT.
- FIS WSP2 conversion NAVD88 The FIS WPS2 conversion plan was converted to NAVD88 for comparison purposes.
- Existing CBBEL This is the Existing plan, based on a combination of the FIS cross sections, the surveyed CBBEL cross sections, and using the starting WSE of the FIS model cross

- section SMD03 approximately 2077' downstream in Wards Creek. It was not used in the WIT.
- Ex CBBEL Start WSEL— This plan was created to better represent the starting water surface
 elevations at the confluence of West Branch with Wards Creek. A copy of cross section
 1, named cross section 0.15, was placed at the confluence. The starting water surface
 elevations were taken from the Wards Creek FIS flood profiles at the confluence with
 West Branch Sawmill Creek. This model was used as the existing conditions for the WIT.
- Natural CBBEL Start WSEL- The natural conditions plan used for the WIT based on Ex CBBEL Start WSEL.

J. SUMMARY OF EXISTING CONDITIONS HYDRAULIC ANALYSIS - DESIGN

The FEMA regulatory WSP2 model was duplicated in HEC-RAS (HEC-RAS Plan FIS WSP2 conversion), and converted to NAVD 88 datum (HEC-RAS Plan FIS WSP2 conversion NAVD88). A new HEC-RAS plan, titled Existing CBBEL, includes corrected reach lengths, updated roadway profiles, the surveyed creek cross sections, culvert geometry, and additional upstream bridges/culverts. Site investigation reveals that the old weir located between cross sections 7 and 8 has been bypassed by the West Branch and is no longer effective. It was previously modeled as a weir in the FIS WSP2. Based on site photos and survey, the creek has meandered its way around the weir. Therefore, the old weir is now modeled as part of standard cross section 7.5. The DuPage County 2' contour interval topographic mapping was used to extend the surveyed cross sections at certain locations. For the Existing CBBEL plan, three FIS cross sections remain in use, including the downstream starting cross section on Wards Creek. Other FIS cross sections were located near the faces of the structures, and were replaced by the newly surveyed cross sections. Comparison tables including the cross section names and locations, and calculated flood elevations, are provided in Section 13. For all modeled flood events, the updated flood profiles are higher than the FIS profiles. The locations of the surveyed cross sections and the FIS cross sections are shown on the Cross Section Location Map in Section 9. The plan Existing CBBEL is provided on the CD.

To better represent the starting water surfaces, elevations at the confluence of West Branch and Wards creeks were interpolated. A plan titled <u>EX CBBEL Start WSEL</u> was created using this starting water surface with an additional cross section 0.15, which is a duplicate of cross section 1 copied to the confluence. This plan <u>EX CBBEL Start WSEL</u> was used as the basis of the existing conditions plan for the WIT.

This independent HEC-RAS design analysis serves as the basis of the design and evaluation of the IDOT design criteria. No Permit model is necessary. HEC-RAS input and output for the <u>EX CBBEL</u> Start WSEL plan are provided in Section 13.B.

K. SUMMARY OF NATURAL CONDTIONS HYDRAULIC ANALYSIS - DESIGN

An independent HEC-RAS plan, titled <u>Natural CBBEL Start WSEL</u>, was created to reflect the natural profile of the stream. The geometry information for the culvert carrying I-55 and the ineffective areas of the upstream and downstream cross sections were removed from the Existing Conditions model in order to calculate the natural water elevations for the Waterway Information Table. The water surface elevations at the upstream face of the I-55 culvert are taken from HEC-RAS cross section 4, a surveyed cross section.

The input data and results of the HEC-RAS plan <u>Natural CBBEL</u> are provided in Section 13.C. Digital versions of these plans are also contained on the CD in Section 21.

L. PROPOSED STRUCTURE ANALYSIS

The proposed scope of the I-55 Managed Lanes project does not call for the reconstruction of the expressway and does not allow for the existing structure to be replaced as part of this project. No culvert repair recommendations were provided by IDOT, as the existing culvert is only 5' (W) x 4' (H). IDOT's Bureau of Maintenance does not inventory or inspect culverts of that size. Email correspondence regarding this finding is included in Section 20.

As there will be no change to the hydraulic characteristics of the culvert, no proposed structure hydraulic analysis is necessary. To meet the IDOT freeboard requirements, potential future improvements at this crossing include replacing the existing culvert with a larger structure, or providing an additional structure next to the existing culvert. See narrative Section P for further discussion on freeboard.

M. SCOUR ANALYSIS

As a concrete culvert with a concrete bottom, scour analysis for the structure is not required. According to the surveyed streambed profile, there is a scour hole present at the downstream end of the I-55 culvert. Also, site photos reveal that the existence of erosion behind the wingwall on the upstream side of the culvert. The results of the existing conditions plan show high outlet velocities from the culvert, 16 fps for the 10-year flood event. These high velocities contribute to the creation of the scour hole on the downstream side.

It is recommended that the embankment behind the wingwall on the upstream side be repaired and the affected area be armored with riprap or other such material. The condition of the wingwall and surrounding area should be monitored against continued erosion. On the downstream side, it is recommended that the scour hole be repaired and the channel armored

using scour countermeasures such as a lined apron or energy dissipation structure. The condition of the downstream channel should be monitored against continued scour.

N. COMPENSATORY STORAGE

West Branch Sawmill Creek has no regulatory floodway, and the tributary drainage area is under 1 square mile. No compensatory storage is required.

O. PERMIT REQUIREMENTS

Since the West Branch Sawmill Creek drainage area is under 1 square mile, no IDNR-OWR floodway construction permit is required.

P. FREEBOARD/CLEARANCE

The IDOT Drainage Manual dated July 2011 states that a flood frequency of 50 years should be used for design purposes. The 50-year Design High Water Elevation (HWE) is shown on the Waterway Information Table located in Section 2.

Freeboard is the distance from the Design HWE to the lowest edge of pavement of the roadway within the floodplain. IDOT freeboard policy requires a minimum freeboard distance of 3 feet. Since detailed roadway cross sections are not available, the DuPage County 2'-contour interval topographic mapping was used to determine the approximate low edge of pavement. The low edge of pavement is at approximately elevation 698.0, and the 50-year HWE is 697.62, providing only 0.38' of freeboard. Therefore, the roadway does not meet the IDOT criteria for freeboard.

The roadway also does not meet the IDOT criterion for overtopping. The existing I-55 overtopping elevation was determined from the existing southbound centerline profile provided by Stantec. The 100-year HWL is 698.4, while the overtopping elevation is 698.17, resulting in the roadway being overtopped for the 100-year event. The method used to determine the overtopping return period is as follows: Various discharges were iteratively input into HEC-RAS to determine the overtopping discharge of 302 cfs. Once the overtopping discharge was determined, it was input into a regression equation to determine its return frequency, which is calculated as the 52-year discharge as shown on the spreadsheet in Section 6. The overtopping elevation is closer to the 100-year elevation because once the water overtops the road, the flow spreads out across the approximately 250' wide sag and the elevation increases slowly per added discharge. The overtopping frequency year is listed as < 100 on the WIT is Section 2.

IDOT has no reported roadway flooding events at this location. The proposed scope of the I-55 Managed Lanes project does not allow for the existing structure to be replaced as part of this project. In order to meet the IDOT freeboard requirements without the need for a roadway profile adjustment, potential future improvements at this crossing include replacing the existing

culvert with a larger structure, or providing an additional structure next to the existing culvert. The existing structure causes a significant increase (8.0') in head for the 50 -year storm. Additional opening area is anticipated to reduce the created head which would help provide the required freeboard. It should be noted that if additional opening area is added to help with freeboard, the potential impacts downstream would have to be considered.

The IDOT requirement for 2' of clearance between the design natural HWL and the low beam elevation is not applicable to culverts. Therefore a clearance analysis was not performed.

Q. CONCLUSION

The existing condition hydraulic analysis concludes that the existing culvert carrying I-55 over the West Branch Sawmill Creek does not meet the IDOT requirements for design freeboard or overtopping. The proposed scope of the I-55 Managed Lanes project does not call for the reconstruction of the expressway and does not allow for the existing structure to be replaced as part of this project. Potential future improvements to meet IDOT requirements include structure replacement, or providing an additional structure next to the existing culvert.

No structural repairs to the culvert have been recommended at this time, as IDOT has not inspected the structure. Inspection is recommended. Installation of erosion protection and scour countermeasures are recommended at each end of the culvert. No floodway construction permit is required, as the drainage area to the site is less than 1 square mile.

Tab 2

	Hydraulic Report -	- Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION	<u>2</u>
	WATERWAY INFORMAT AND SUPPORTING CAL	
	AND COLL CITIES ONE	.002/110110
S B		

Culvert Waterway Information Table

D/S Streambed Elev.: -

Route:	Interstate 55	Existing SN:	n/a		
Waterway:	West Branch Sawmill Creek	Proposed SN:			
Section:	I-355 to I-94	Prepared by:	EMB	Date:	08/5/2016
County:	DuPage County	Checked by:	IAD	Date:	02/09/2017

				Ex	isting Overtopp	oing Elev. $= 698$	3.17 at \$	Sta. 4805+50 ((SB Centerline)
Drainage Area =	0.75 square	miles		Prop	osed Overtopp	oing Elev. =	at \$	Sta.	
Flood Event	Freq.	Discharge	Waterway (Opening - ft ²	Natural	Hea	d - ft	Headwate	er Elevation – ft
Flood Everit	Yr.	ft ³ /s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed
	10	178	11	-	689.2	3.9	-	693.1	-
Design	50	290	13	-	689.6	8.0	-	697.6	-
Base	100	345	14	-	689.8	8.6	-	698.4	-
Scour Design Check	-	-		-			-	-	-
Overtop Existing	< 100	302	13	-	689.6	8.6	-	698.2	-
Overtop Proposed	-	-		-			=	-	-
Max. Calc.	500	495	16	-	690.2	8.4	-	698.6	-

Datum: NAVD 88

All-Time H.W.E. & Date: ~695 (NGVD29) September 1961

Surveyed Normal Water Level: 687.22 ft.

EXISTING STRUCTURE

10-Year Velocity through Existing Structure = 16 ft/s

10-Year Velocity through Proposed Structure = - ft/s

2-Yr. Flow Rate = ~112 ft³/s

PROPOSED STRUCTURE

Type:	Reinforced Concrete Box Culvert	Culvert Type:			
Length/Width:	L-232.74 ft. 5.0'(W) x 4.0'(H)	Length Of Span:			
# Spans/Cells:	1	# Cells:			
Low Chord:	n/a	Top Of Crown Elev.: Beam:			
Skew:	0° (relative to road)	Skew:	(relative t	o road)	
Clearance:	n/a	Culvert Invert Elev.:	(u/s)	(d/s)	
Bridge Flow Line:	- (u/s) - (d/s)	Low E.O.P:			_
Low E.O.P:	698.00	Freeboard:			
	0.001				

 Freeboard:
 0.38'
 U/S-686.93 D/S 683.12

 EXISTING EMBEDMENT
 PROPOSED EMBEDMENT

 Depth:
 n/a
 Depth:

 U/S Streambed Elev.:
 U/S Streambed Elev.:

NOTE: THERE ARE NO PROOPSED MODIFICATIONS TO THE EXISTING CULVERT.

D/S Streambed Elev.: -

Printed 2/9/2017 D1 PD0035 (10/07/14)

ROUTE: I-55 MADE BY: EMB DATE: 8/5/2016 WATERWAY: West Branch Sawmill Creek CHECKED BY: IAD DATE: 8/25/16

WATERWAY INFORMATION TABLE BACK-UP CALCULATIONS

CALCULATE CREATED HEAD AND HEADWATER ELEVATION

Frequency	Natural H.W.E. (ft) ¹		Culvert from Summary Tables (ff) = 1		Headwater Elevation at U/S Face of Structure (ft) ^{2A}	
	U/S Face of Structure	Approach Section (XS 4)	Existing	Proposed	Existing	Proposed
10-year	688.8	689.2	3.9	N/A	693.1	N/A
50-year	689.2	689.6	8.0	N/A	697.6	N/A
EXOT	689.3	689.6	8.6	N/A	698.2	N/A
100-year	689.4	689.8	8.6	N/A	698.4	N/A
500-year	689.8	690.2	8.4	N/A	698.6	N/A

^{1.} The natural highwater elevation is the water surface elevation at the upstream side of the crossing as modeled in the stream natural condition, without the structure.

CALCULATE FREEBOARD AND CLEARANCE

Low Road Elevation (ft) ³				
Existing	Station	Proposed	Station	
4805+00	698.00	n/a	n/a	
	Low Bear	n Elevation (ft)		
Existing	Station	Proposed	Station	
n/a	n/a	n/a	n/a	
	Existing I	Freeboard (ft) 4		
10-Year	50-Year	100-Year	500-Year	
4.93	0.38	-0.38	-0.60	
	Proposed	Freeboard (ft) 4		
10-Year	50-Year	100-Year	500-Year	
n/a	n/a	n/a	n/a	
Proposed Vertical Clearance (ft) 5				
10-Year	50-Year	100-Year	500-Year	
n/a	n/a	n/a	n/a	

^{3.} Low road elevation is calculated at the EOP and on the low side of the roadway.

^{2.} The created head is calculated at the cross section upstream of the bridge/culvert which has the greatest difference between the natural and proposed conditions. This method of calculating created head is only required for bridges and some major culvert crossings. Also, the preferred created head should never be negative.

²A. Headwater elevations = the natural highwater elevation + the created head. (In this case, the I-55 culvert creates a level pool situation upstream. To accurately reflect the headwater elevations, the headwater elevation is calculated as the natural H.W.E. @ approach section XS 4 + the created head.)

^{4.} Freeboard is calculated from the 50-yr design headwater elevation to the proposed edge of pavement in the floodplain.

^{5.} Vertical clearance is calculated from the <u>natural</u> high water elevation to the low chord elevation.

ROUTE: I-55 MADE BY: EMB Rev. DATE:8/5/2016 WATERWAY: West Branch Sawmill Creek CHECKED BY: IAD DATE: 08/25/16

WATERWAY INFORMATION TABLE BACK-UP CALCULATIONS (Continued)

CALCULATE EXISTING EFFECTIVE WATERWAY OPENING AREA

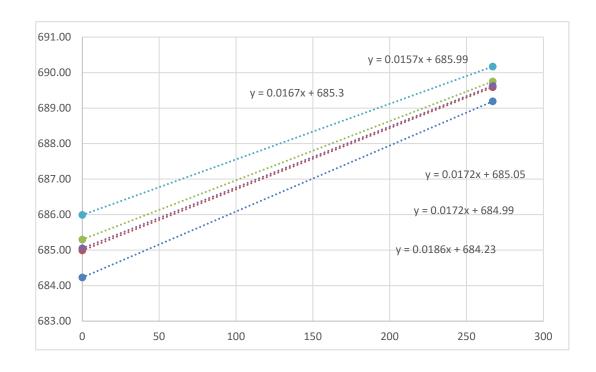
		Natural WSE	Depth of Flow in	Width of Culvert	Area below Nat.
Frequency	Flowline	at XS 4	Culvert (ft.)	(ft.)	WSE (sft.)
10-year	686.93	689.2	2.26	5	11
50-year	686.93	689.6	2.66	5	13
EXOT	686.93	689.6	2.70	5	13
100-year	686.93	689.8	2.82	5	14
500-year	686.93	690.2	3.24	5	16

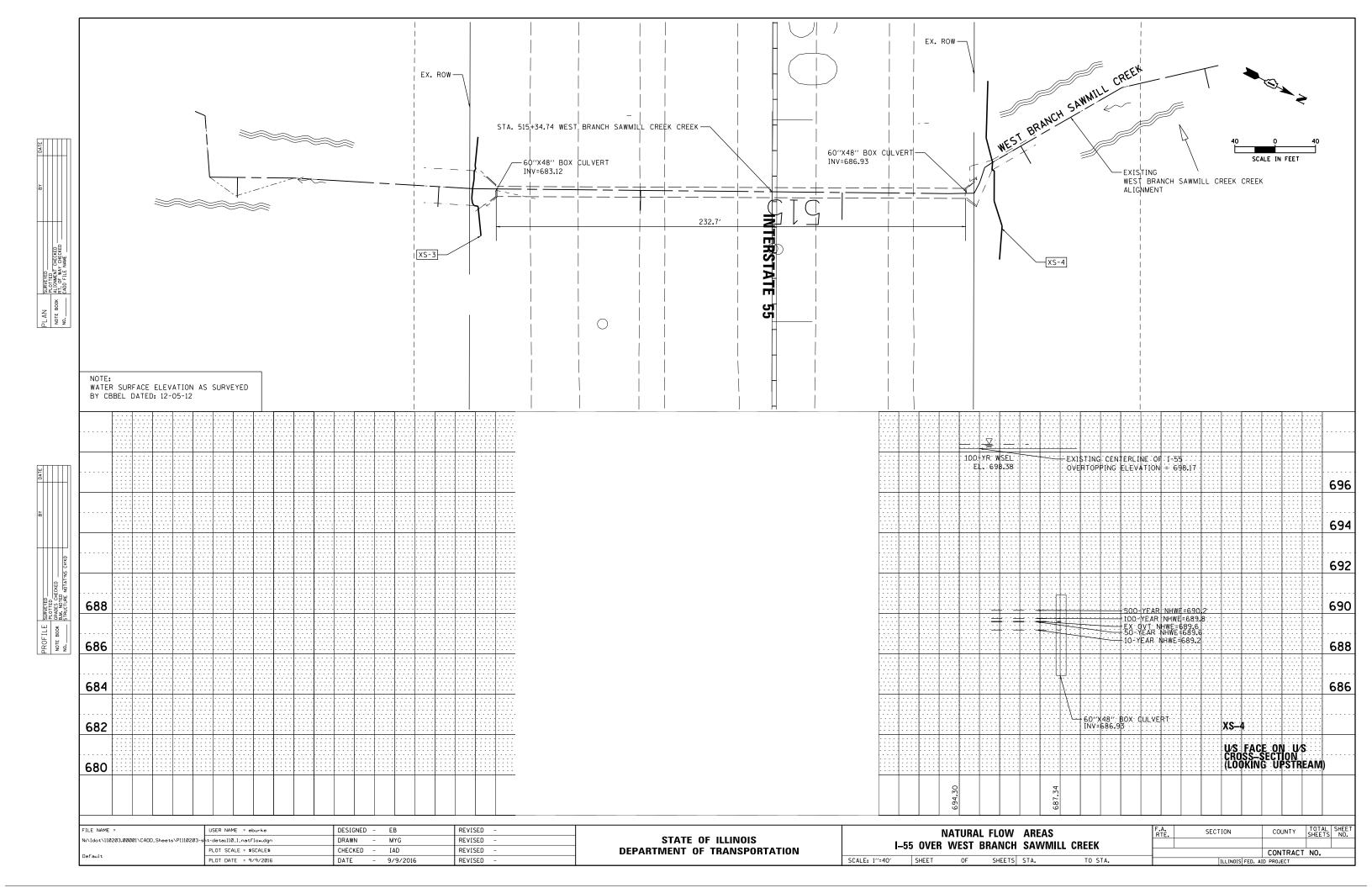
Culvert is a 5' (W) x 4' (H) RCBC

SU	SUMMARY TABLE COMPARING 10-YEAR NATURAL TO EXISTING WSE					
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference			
11.5	714.22	714.22	0.00			
11	711.85	711.85	0.00			
10.5	711.61	711.61	0.00			
10	711.51	711.51	0.00			
9.1		CULVERT				
9	703.45	703.45	0.00			
8	701.99	701.99	0.00			
7.5	700.86	700.86	0.00			
7	701.11	701.11	0.00			
6	701.11	701.11	0.00			
5.1		CULVERT				
5	691.83	693.07	1.24			
4	689.19	693.07	3.88			
3.1		CULVERT				
3	684.23	684.22	-0.01			
2	679.96	679.96	0.00			
1	679.22	679.22	0.00			
0.15	679.00	679.00	0.00			

SU	SUMMARY TABLE COMPARING 50-YEAR NATURAL TO EXISTING WSE					
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference			
11.5	714.70	714.70	0.00			
11	712.49	712.49	0.00			
10.5	712.19	712.18	-0.01			
10	712.00	711.98	-0.02			
9.1		CULVERT				
9	705.60	703.94	-1.66			
8	705.65	703.35	-2.30			
7.5	705.66	703.37	-2.29			
7	705.67	703.43	-2.24			
6	705.66	703.42	-2.24			
5.1		CULVERT				
5	692.42	697.61	5.19			
4	689.59	697.62	8.03			
3.1		CULVERT				
3	684.99	684.99	0.00			
2	680.07	680.07	0.00			
1	679.64	679.64	0.00			
0.15	679.40	679.40	0.00			

SUN	SUMMARY TABLE COMPARING 100-YEAR NATURAL TO EXISTING WSE					
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference			
11.5	714.90	714.90	0.00			
11	712.75	712.75	0.00			
10.5	712.53	712.39	-0.14			
10	712.31	712.14	-0.17			
9.1		CULVERT				
9	708.11	706.48	-1.63			
8	708.09	706.58	-1.51			
7.5	708.09	706.58	-1.51			
7	708.09	706.59	-1.50			
6	708.10	706.58	-1.52			
5.1		CULVERT				
5	692.68	698.34	5.66			
4	689.75	698.38	8.63			
3.1		CULVERT				
3	685.30	685.29	-0.01			
2	680.12	680.12	0.00			
1	679.90	679.90	0.00			
0.15	679.70	679.70	0.00			


SUMMARY TABLE COMPARING 500-YEAR NATURAL TO EXISTING WSE						
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference			
11.5	715.46	715.46	0.00			
11	713.34	713.34	0.00			
10.5	713.02	713.04	0.02			
10	712.63	712.66	0.03			
9.1		CULVERT				
9	708.59	708.46	-0.13			
8	708.57	708.44	-0.13			
7.5	708.57	708.44	-0.13			
7	708.58	708.45	-0.13			
6	708.58	708.45	-0.13			
5.1		CULVERT				
5	693.23	698.53	5.30			
4	690.17	698.60	8.43			
3.1		CULVERT				
3	685.99	685.98	-0.01			
2	680.25	680.25	0.00			
1	680.24	680.24	0.00			
0.15	680.00	680.00	0.00			


SUMMARY TABLE COMPARING EX-OT NATURAL TO EXISTING WSE						
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference			
11.5	714.76	714.76	0.00			
11	712.56	712.56	0.00			
10.5	712.25	712.22	-0.03			
10	712.04	712.00	-0.04			
9.1		CULVERT				
9	706.20	704.54	-1.66			
8	706.27	704.47	-1.80			
7.5	706.28	704.48	-1.80			
7	706.28	704.50	-1.78			
6	706.28	704.49	-1.79			
5.1		CULVERT				
5	692.48	698.19	5.71			
4	689.63	698.21	8.58			
3.1		CULVERT				
3	685.05	685.05	0.00			
2	680.08	680.08	0.00			
1	679.79	679.79	0.00			
0.15	679.60	679.60	0.00			

Interpolate NHWE US Face of Existing Structure

Cross Section	4	3	Interpolated U/S Face
Distance to XS 3	267	0	244.63
10 Year	689.19	684.23	688.78
50 Year	689.59	684.99	689.20
EX OT	689.63	685.05	689.26
100 Year	689.75	685.30	689.39
500 Year	690.17	685.99	689.83

XS 4 to U/S face

Tab 3

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek	
SECTION 3	
HYDRAULIC REPORT DATA SHEETS AND CHECKLIST	

Hydraulic Report Data Sheets

Rout Secti Cour Exist Prop	ion _ nty _ :SN _	Interstate 55 I-355 to I-94 DuPage n/a n/a				P or D # PTB #	P-91-7 158-00			
				Genera	al Info	rmation				
1.	Name of	the Stream:	West Branch	Sawmill Cre	ek					
2.	Location	of the Structure:	NW Township	¼ of the 37N,		NE Range 1	1E	1/4 of Section of the 4	34,	P.M.
3.	Hydrauli	c Report Prepare	- =	Consultant _ District	Christ	topher B. B	urke Enç	gineering, Ltd		
4.	Hydrauli	c Report Approva	l Authority:					Hydraulics Slopies of HR to		
				Site I	Desig	n Data				
5.	Drainage	e Area (sq. mi.):	0.75							
6.	Highway	Classification:		☐ Rural ☐ Urban ☐ Other			Principal Minor Ar Collectoi Local	terial		
7.	Design F	requency:	30 yr ⊠	50 Yr. 🗌	Othe	r				
8.	If more to The FIS	of Waterway Info han one, explain: model included the nto the FIS model	ne subject str			for the des	sign mod	lel incorporati	ng current	
-	Survey II	no the Filo model								
				Hydrologic &	Hydr	aulic Anal	ysis			
9.	Hydrolog	gy Modeling (ched	ck all that app	oly): [US Oth	GS/Stream ner	n Stats	⊠ FIS	☐ Gage	Data
10.	a. Methob. Mannc. Sourced. Non-	c Modeling (check od: M HEC-R hing's "n" values of If no, explain: the of Starting WS IDOT encroachm If yes, are the the Tailwater Colling In the Starting In	AS Wetermined as E: FIS ents in Survey accounted	SPRO sper IDOT DI sper	Other M CH.		'es [☐ No		
	f. Were	the Expansion/Co		nes properly a	addres	ssed?	⊠ Yes	☐ No	□ N/A	

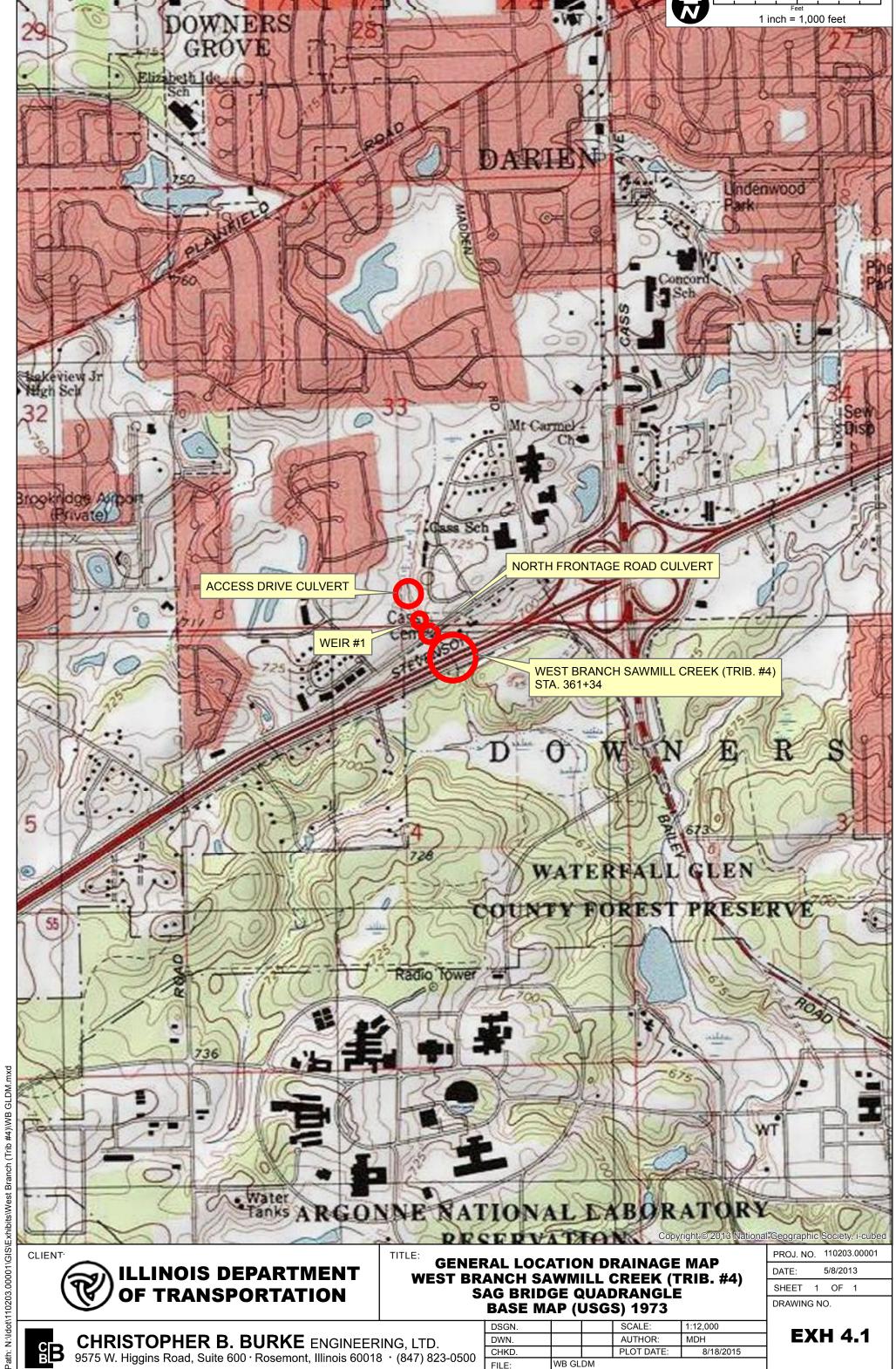
	· ·	Expansion: Contraction	2 (X:1) 1 (X:1)	
	IDNR – OWR Floodwa	y Permit		
11.	Is area experiencing urbanization or expected to urbanize with	in 10 years?	⊠ Yes □ No	
12.	Are there any sensitive flood receptors located upstream within If yes, list and describe critical upstream flood damageable pro	•		⊠ No
13.	Is there any History of Flooding or Overtopping problems? Sources of Observed Highwater: September 1961 HWL estimated at approximately 695 (NGVD Sag Bridge Quadrangle, 1966.	_	No logic Investigations Atlas for	
14.	Is the structure hydraulically connected to or within the floodware Public Body of Water? Yes No	ay of an IDNR-O	WR designated	
15.	Required IDNR - OWR Permit type: Individual SWP #2 SWP #12 None Other	☐ Floodway		
	Proposed Structure	e Data		
16.	Project Scope (check all that apply): Existing culvert to remain a. Complete Replacement Superstructure Replacement Superstructure Widening; Length of Pier Extension in the U/S Dr. Culvert New Alignment Work Planned Below Q ₁₀₀ HWE? Profile Raise	ne water: /S	repairs recommended.	
17.	If a bridge is proposed, supply: Flow line elevation (ft): Preliminary low beam elevation (ft): Width of deck (ft): Total length from face to face of abutment (ft)	Abutment type Skew (degree Number of sp	es):	
18.	If a culvert is proposed, supply: Type and size: Upstream invert elevation (ft): Downstream invert elevation (ft): Note: Upstream and downstream elevations should reflect the elevations before	Length (ft): Entrance typ Skew (degre ore the 3" drop is ap	es):	
19.	If a three-sided structure is proposed, supply: Flow line elevation (ft): Span (ft): Height (ft):	Skew (degre Length (ft): Number of s		
20.		No ⊠ NA No □ NA	Value (ft): N/A Value (ft): 0.38'	
21.	Type of streambed soil : ☐ Clay ☐ Silt ☐ Sand	Loam		

22.	Scour/ Migration Problem Comments: Scour hole	s: None/Minimal s at upstream (1.0') and c	200	Significant eam (2.0') er		evere Ivert.	
	Ice Concerns: Comments:	None/Minimal ■		Significant	□ s	evere	
	Debris Concerns: Comments:	None/Minimal ■		Significant	□ s	evere	
	Countermeasures Propos	sed: Repair upstream e	mbankr	nent erosion,	install s	cour countermeasu	res.
		Existin	g Struc	ture Data			
				N. Frontag Structi U/S	ure	Interstate 55 Subject Structure	Confluence With Wards Creek
23.	Distance from proposed s	structure: (ft.)		240)	0.	1000'
24.	Type of structure:			5'x4' R0	CBC	5'x4' RCBC	No Structure
25.	Low beam elevation:			N/A	1	N/A	No Structure
26.	Flow line elevation:			694.9	97	686.93	~676
27.	Maximum known high water elevation: ~695			5	~695	~675	
28.	Date of maximum high wa	ater:		Sept. 1961		Sept. 1961	Sept. 1961
29.	Cause (backwater, heady	vater, etc.):		N/A		N/A	N/A
30.	Does structure carry entir	e design flood flow?		⊠ Yes [☐ No	⊠ Yes □ No	☐ Yes ☐ No
	If not, state area of addition	onal waterway opening: (f	t²)	N/A	1	N/A	No Structure
31.	Type and size of existing overflow structures:			N/A		N/A	No Structure
32.	Has adverse scour occurred under or adjacent to the structure?			Yes		Yes	No Structure
33.	Classify type of scour and degradation:	d/or aggradation /		Culvert Veloc		Culvert I/O Velocity	No Structure
		Require	ed Add	itional Data			
34.	Deviations from the Gene N/A	eral Procedures presented	d in IDO	T DM CH. 2,	СН.6, а	nd CH.7:	
35.	Information regarding hig other controls affecting pr		ns, rese	rvoirs, flood	control p	rojects, proposed ch	hannel changes, or
	N/A						
36.	Site Inspection made by:	Christopher B Burke E	inginee	ring Ltd		Date: Novemb	er 2013
	Remarks: Inspected by Edmund Bu	rke.					
37.	Prepared by: Edmi	und M. Burke				Date _August 5,	, 2016
	Signed (QA/QC):	Vener Das les	4			Date August 2	5, 2016
Printe	ed 9/9/16	±,••	Page 3 o	f 4		BBS	S 2800 (Rev. 03/10/11)

Hydraulic Report Checklist

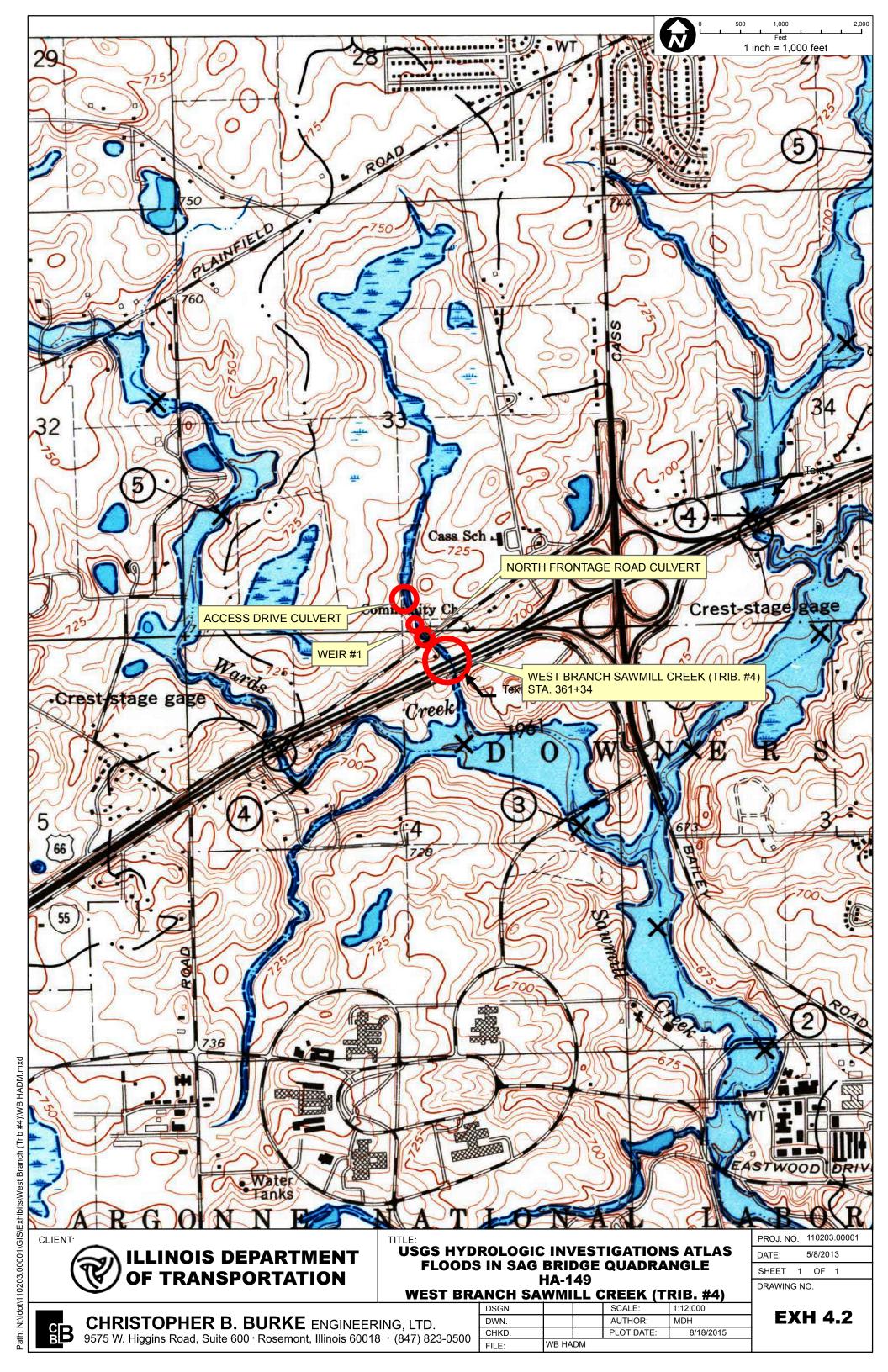
The District or Consultant should complete the following checklist before submitting the Hydraulic Report for approval.

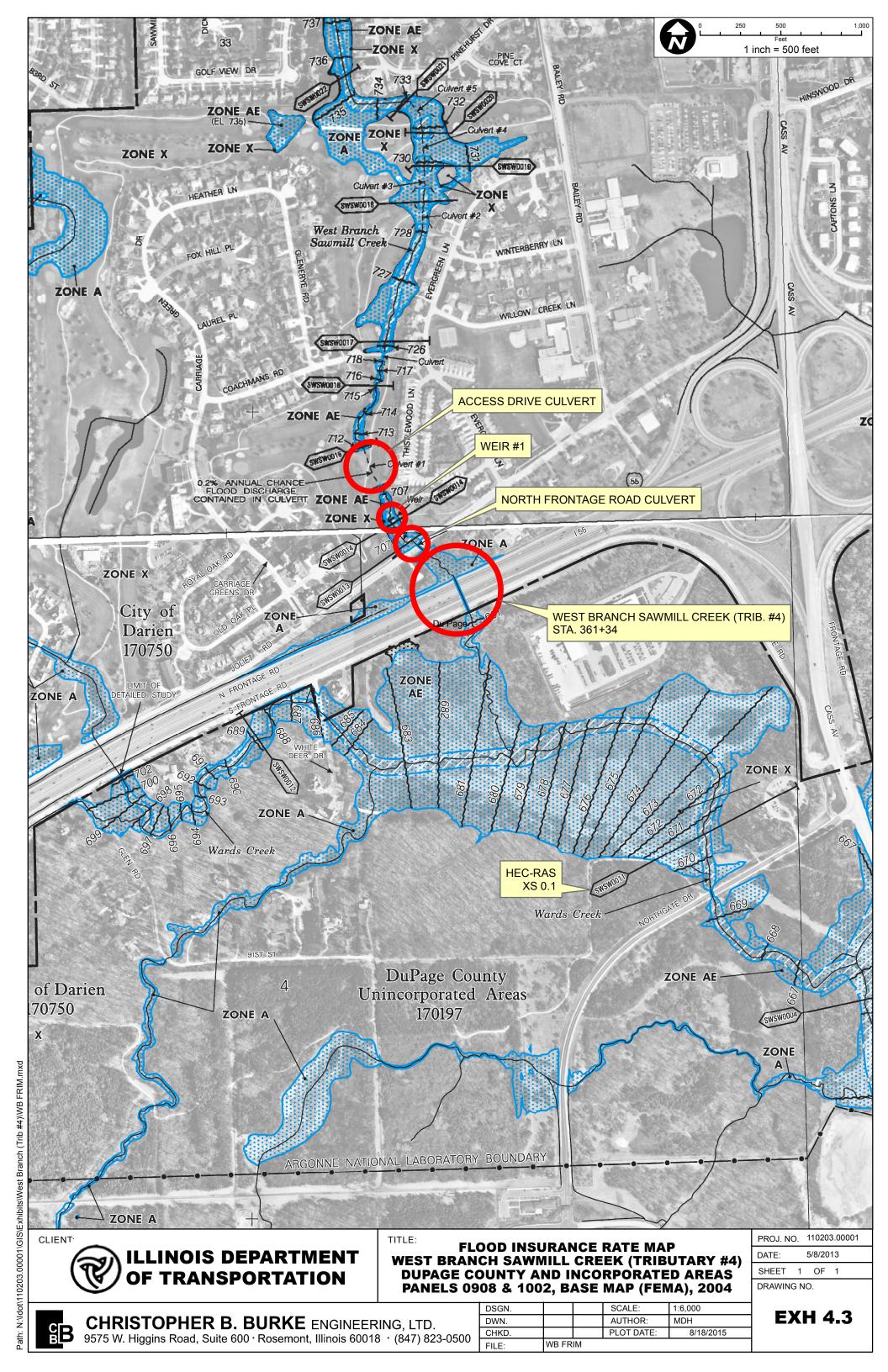
1.		Title Page					
2.		Table of Contents					
3.		Narrative - (as outlined in Section 2-601.01 Item #3)					
4.		Waterway Information Table (WIT) - (as outlined in Section 2-601.01 Item #4)					
5.		Hydraulic Report Data Sheets					
6.		Location Map - should show the subject structure along with nearby location defining landmark (cities, roads, highways, etc.)					
7.		USGS Hydraulic Investigation Map (District 1 only)					
8.		Photographs - (Minimum: U/S & D/S Structure Faces, Up & Down Channel, Up & Down Roadway Across Structure)					
9.		Hydrology (map and calculations)					
10.		Streambed Profile					
11.		Roadway Profile (existing and proposed)					
12.		Cross Section Plots - with plan layout preferably overlayed upon an aerial photo with the contours					
13.		Bridge Opening Plots					
14.		Natural Condition Analysis When HEC-RAS modeling is being used, ALL					
15.		Existing Condition Analysis Plans (Natural, Existing, & Proposed) shall be included in ONE Project File.					
16.		Proposed Condition Analysis					
17.		Scour Analysis – Existing and Proposed Conditions					
18.		Compensatory Storage Calculations (if required)					
19.		Survey Notes (if available, No Electronic Point Files)					
20.		Correspondence Notes					
21	\boxtimes	CD with Project Files (Include pdf copy of the Hydraulic Report)					


Tab 4

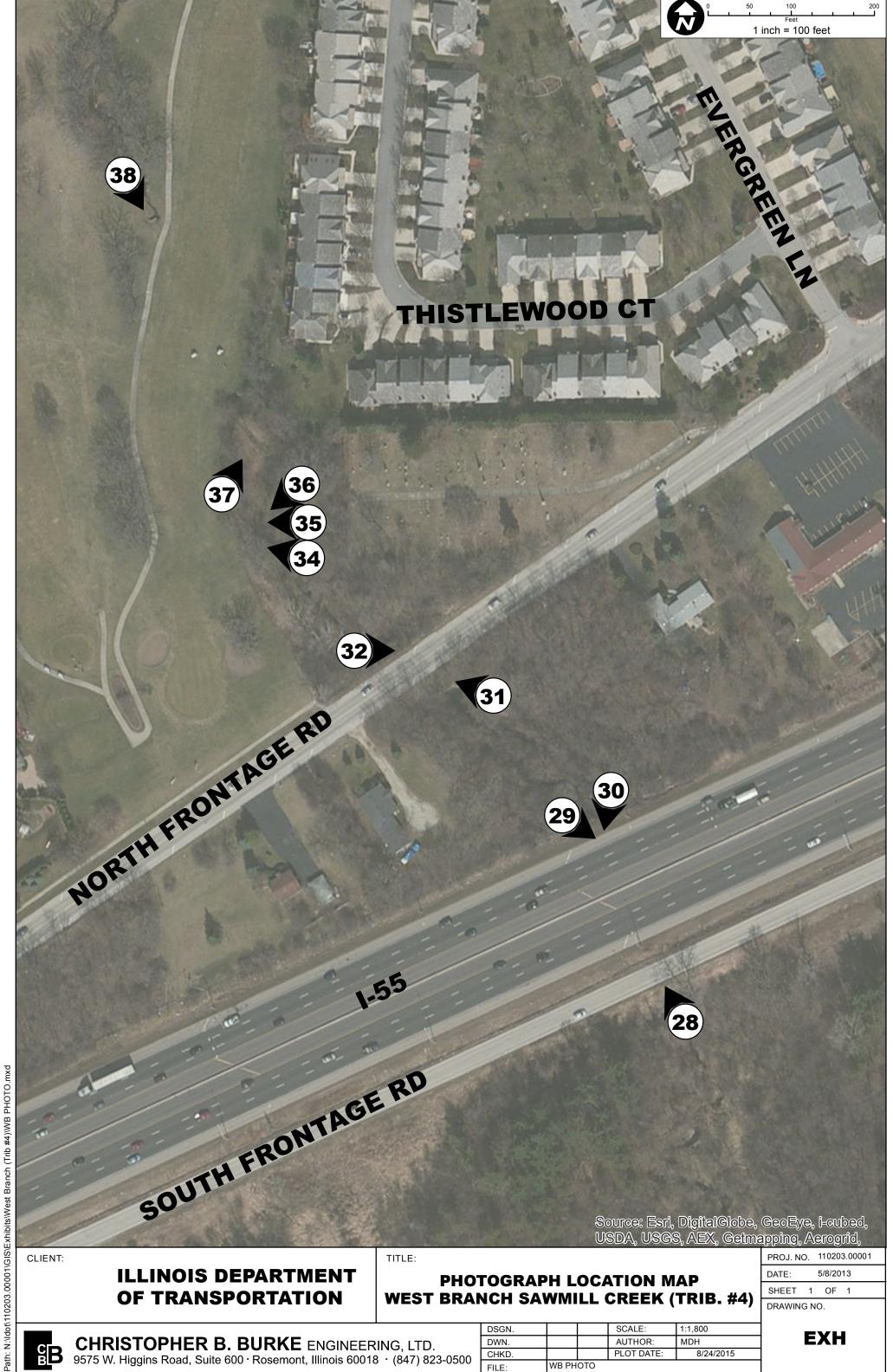
Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek

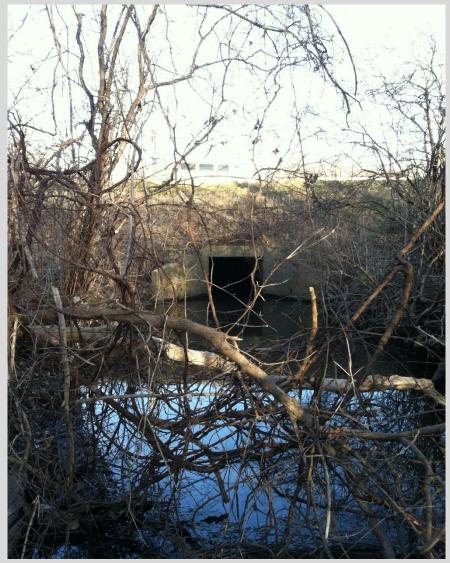
SECTION 4


LOCATION MAP
USGS HYDROLOGIC INVESTIGATIONS ATLAS
REGULATORY FLOOD MAP



FILE:

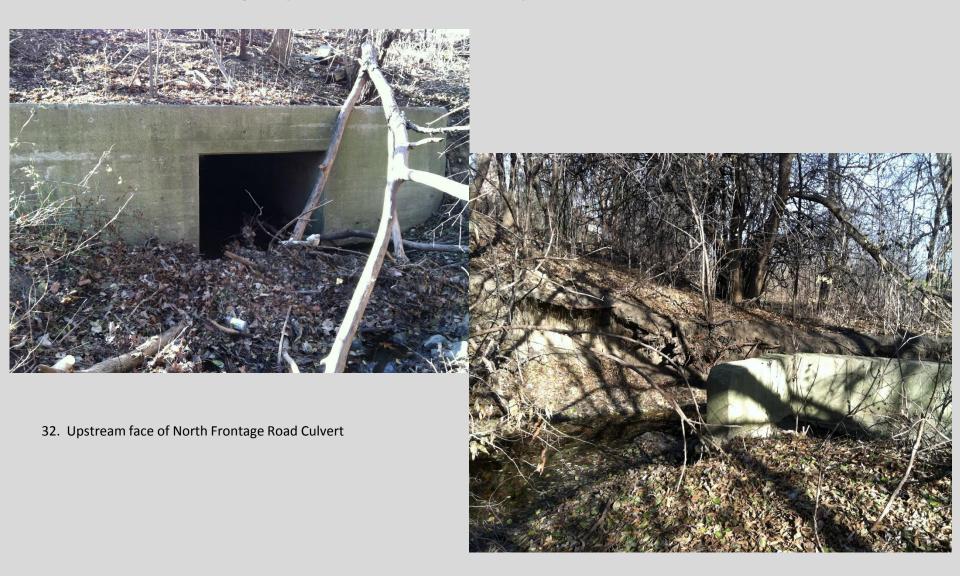

WB GLDM



Tab 5

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 5
	PHOTOGRAPHS
_	
C B	

28. Downstream Face of I-55 Structure Culvert


29. Upstream Face of I-55 Structure Culvert

30. Upstream Face of I-55 Culvert

31. Downstream Face of North Frontage Road Culvert

34. Downstream Face of Weir showing creek bypass

35. Photo along Face of Weir

36. Upstream face of Weir showing creek bypass

37. Downstream face of Golf Cart Culvert

38. Upstream face of Golf Cart Culvert

Tab 6

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 6
	HYDROLOGY
S B B	

The Federal Emergency Management Agency in Cooperation with DuPage County, Illinois Presents:

FLOOD INSURANCE STUDY

A Report of Flood Hazards in:

DUPAGE COUNTY, ILLINOIS AND INCORPORATED AREAS

Prepared, in parts, by:

FEMA

Region V 536 South Clark Street Chicago, Illinois 60605

and

Nika Engineering 421 Mill Street Batavia, Illiois 60510

March 2007 1 7043CV000A

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS components.

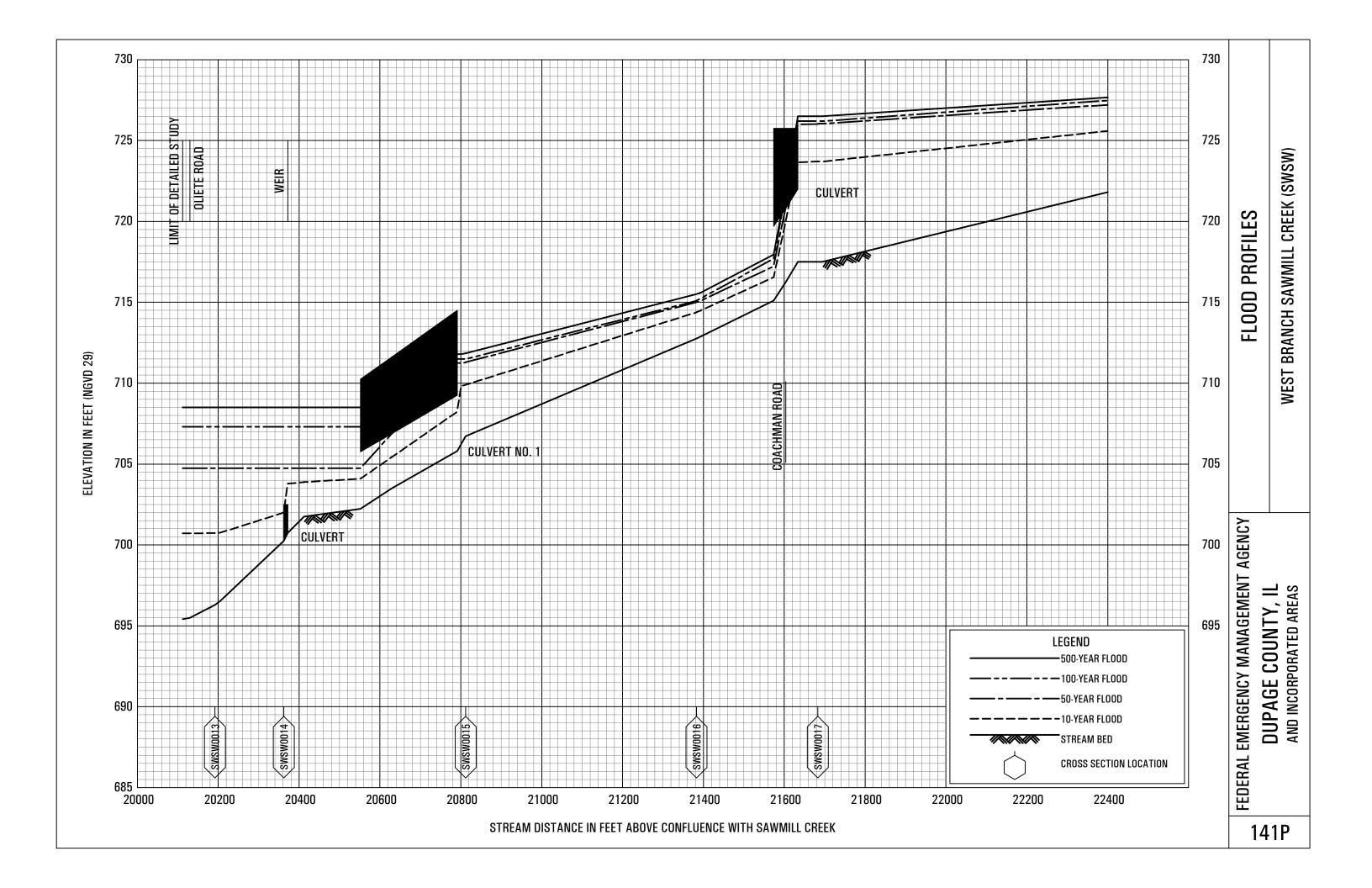
Initial Countywide FIS Effective Date: December 4, 1985

Revised Countywide FIS Date: June 16, 2004

Tributary 1 - at river mile 0.23	2.33	324	*	617	*
Sawmill Creek - Tributary 3 - at mouth	1.14	241	427	559	960
Sawmill Creek - West Branch					
- at I-55	0.75	178	290	345	495
- near Cass School	0.58	149	245	290	420
- near Bay View	0.42	146	238	285	402

3.6.1.3 Hydraulic Analysis

Analysis of the hydraulic characteristics of flooding from the sources studied was carried out to provide estimates of the elevations of floods of the selected recurrence intervals.


Channel cross-section data were obtained from field surveys. All bridges and culverts were surveyed to obtain elevation data and structural geometry

Locations of selected cross-sections used in the hydraulic analysis are shown on the Flood Profiles and on the Flood Insurance Rate Map.

The water-surface elevations for the streams studied in detail and limited detail were computed using either the SCS WSP-2 backwater computer program or the USACE HEC-2 step-backwater computer program (U.S. Department of Agriculture, 1974; USACE, HEC-2 Water-Surface Profiles, Computer Program723-X6-L202A, 1973). The USACE HEC-2 model was used for all streams studied in detail and limited detail except for Meacham Creek, Sawmill Creek, Salt Creek, Spring Brook, and Westwood Creek, which were modeled utilizing the SCS WSP-2 program (U.S. Department of Agriculture, 1974).

Stream cross-sections and bridge sections for East Branch Sawmill Creek, Sawmill Creek, and West Branch Sawmill Creek were surveyed using land survey techniques. All of the cross sections on Sawmill Creek and the cross sections downstream from 75th Street on East Branch Sawmill Creek were surveyed by the SCS; upstream sections were surveyed by Harza. All sections on West Branch Sawmill Creek were surveyed by Harza.

Water-surface elevations for floods of the selected recurrence intervals were computed using hydraulic models for East Branch Sawmill Creek and Sawmill Creek prepared by the SCS (Des Plaines River Watershed

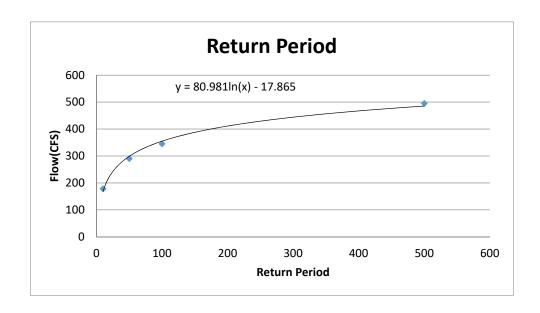
FLOODING SOL	JRCE		FLOODWAY		BASE F		SURFACE ELE' NGVD)	VATION
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
West Branch Sawmill Creek (SWSW) SWSW0013 SWSW0014 SWSW0015 SWSW0017 SWSW0018 SWSW0019 SWSW0020 SWSW0021 SWSW0022 SWSW0023 SWSW0024 SWSW0025 SWSW0026	20,192 ¹ 20,362 ¹ 20,812 ¹ 21,383 ¹ 21,683 ¹ 22,630 ¹ 22,825 ¹ 23,035 ¹ 23,315 ¹ 23,693 ¹ 24,696 ¹ 25,116 ¹ 25,945 ¹ 26,679 ¹	85 60 28 39 57 61 55 88 15 66 53 402 29 15	572 291 78 70 338 188 161 226 265 85 279 2,131 24 16	0.6 1.2 4.4 4.2 0.9 1.5 1.8 1.3 1.1 3.3 0.4 0.1 3.4 5.1	707.3 707.3 711.5 715.1 726.2 728.4 729.9 731.8 733.2 734.2 738.7 738.7 742.0 759.0	707.3 707.3 711.5 715.1 726.2 728.4 729.9 731.8 733.2 734.2 738.7 738.7 742.0 759.0	707.4 707.4 711.6 715.2 726.3 728.5 723.0 731.9 733.3 734.3 738.8 738.8 742.1 759.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

¹ In feet above confluence with Sawmill Creek

TABLE 5

FEDERAL EMERGENCY MANAGEMENT AGENCY

DUPAGE COUNTY AND INCORPORATED AREAS


FLOODWAY DATA

WEST BRANCH SAWMILL CREEK (SWSW)

Regression Equation - Solve for 2 year Q for WSAS1C and OVT I-55 over West Branch Sawmill Creek

<u>Input</u>	<u>Data</u>
Return Period	Actual Q
10	178
50	290
100	345
500	495

Calculated Data			
Return Period	Actual Q	Calculated Q	
2	1	38	
10	178	169	
50	290	299	
100	345	355	
500	495	485	
52	-	302	OVT

NOTES:

Overtopping flow of 302 cfs determined from HEC-RAS by iteration.

By Excel Trendline calculation, x = return period in years, y = flow in cfs:

Therefore, overtopping return period = 52 years.

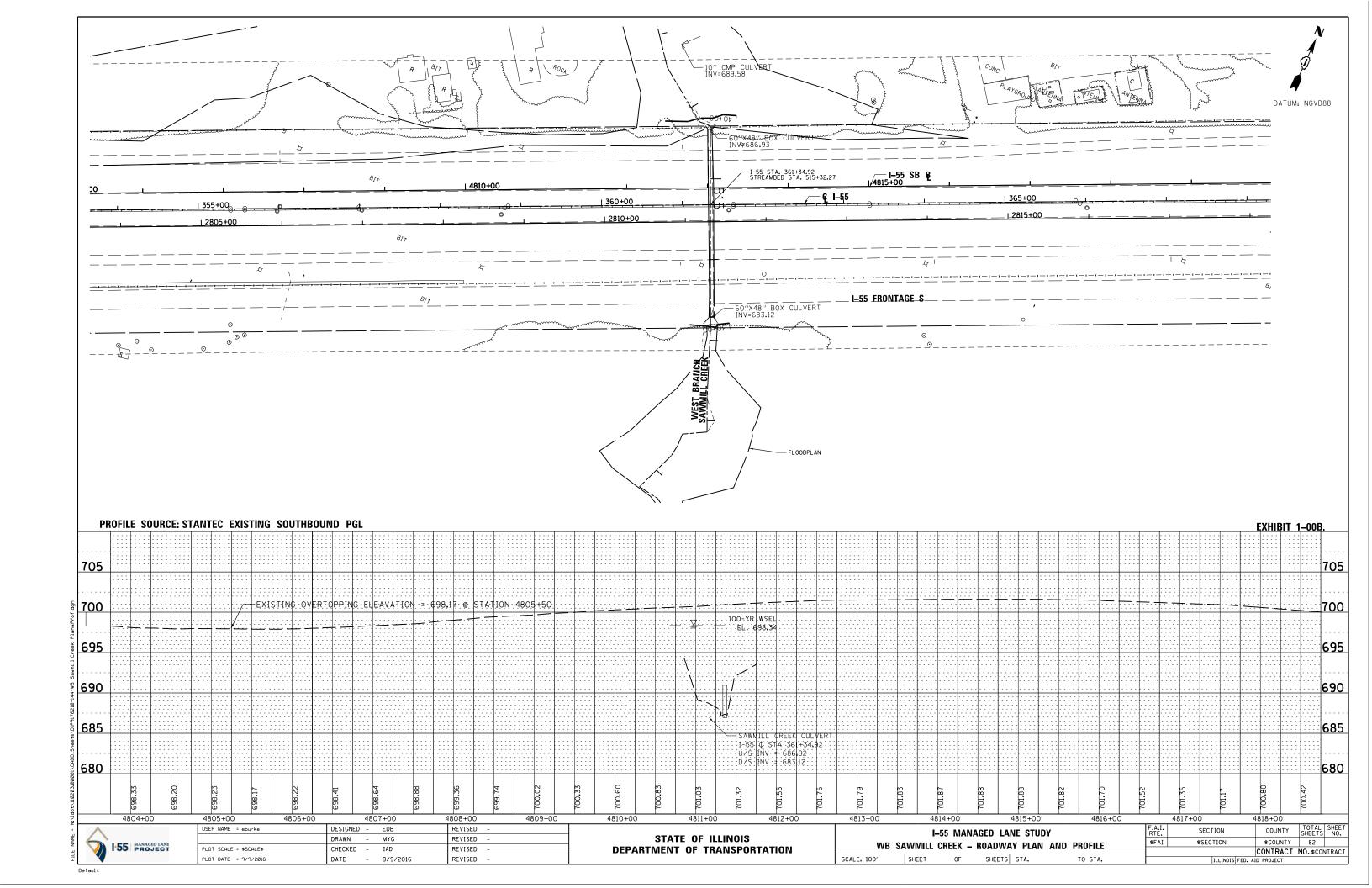
80.981 ln (52) - 17.865 = 302.

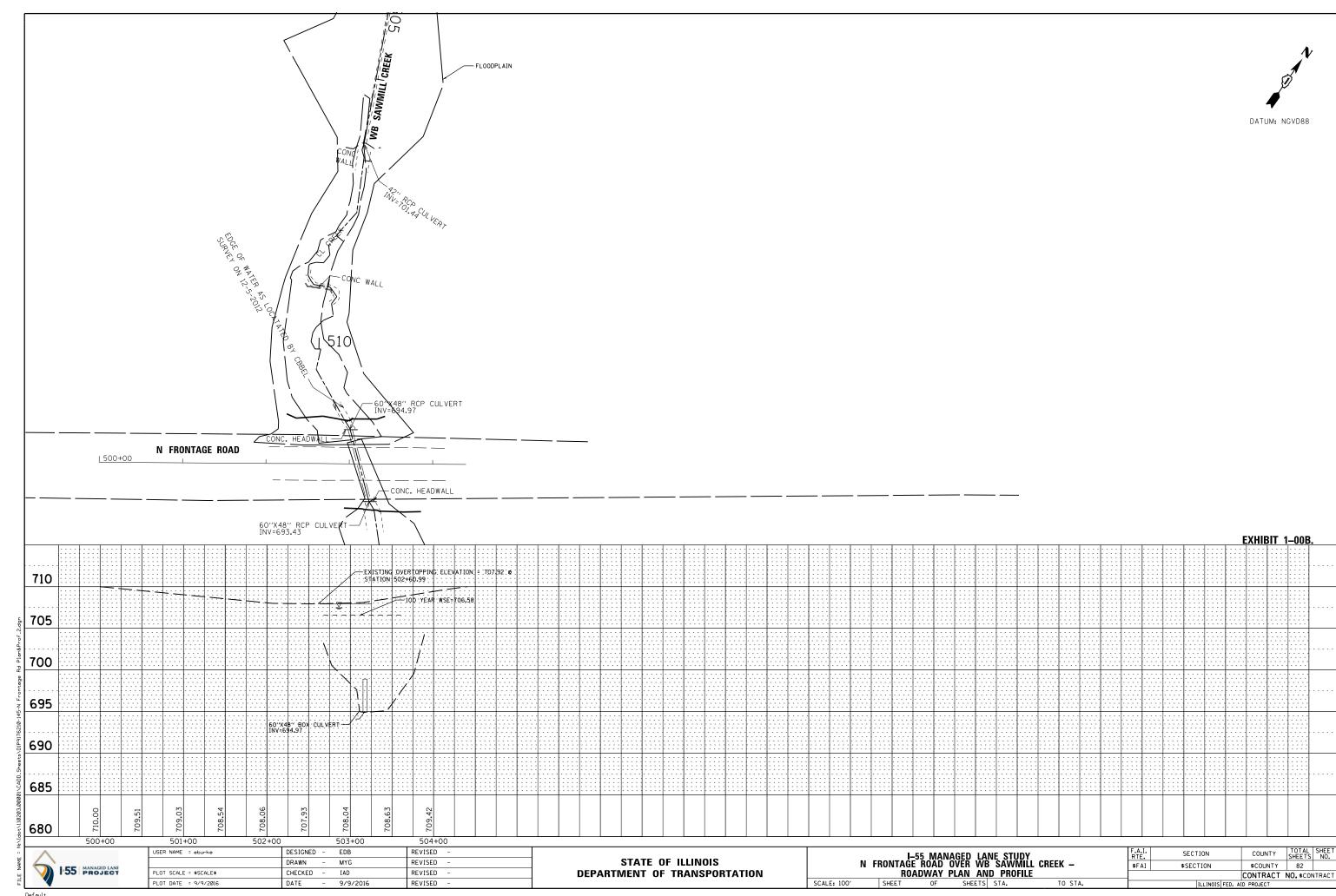
Tab 7

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 7
	STREAMBED PROFILE
CB	

STREAMBED PLAN AND PROFILE

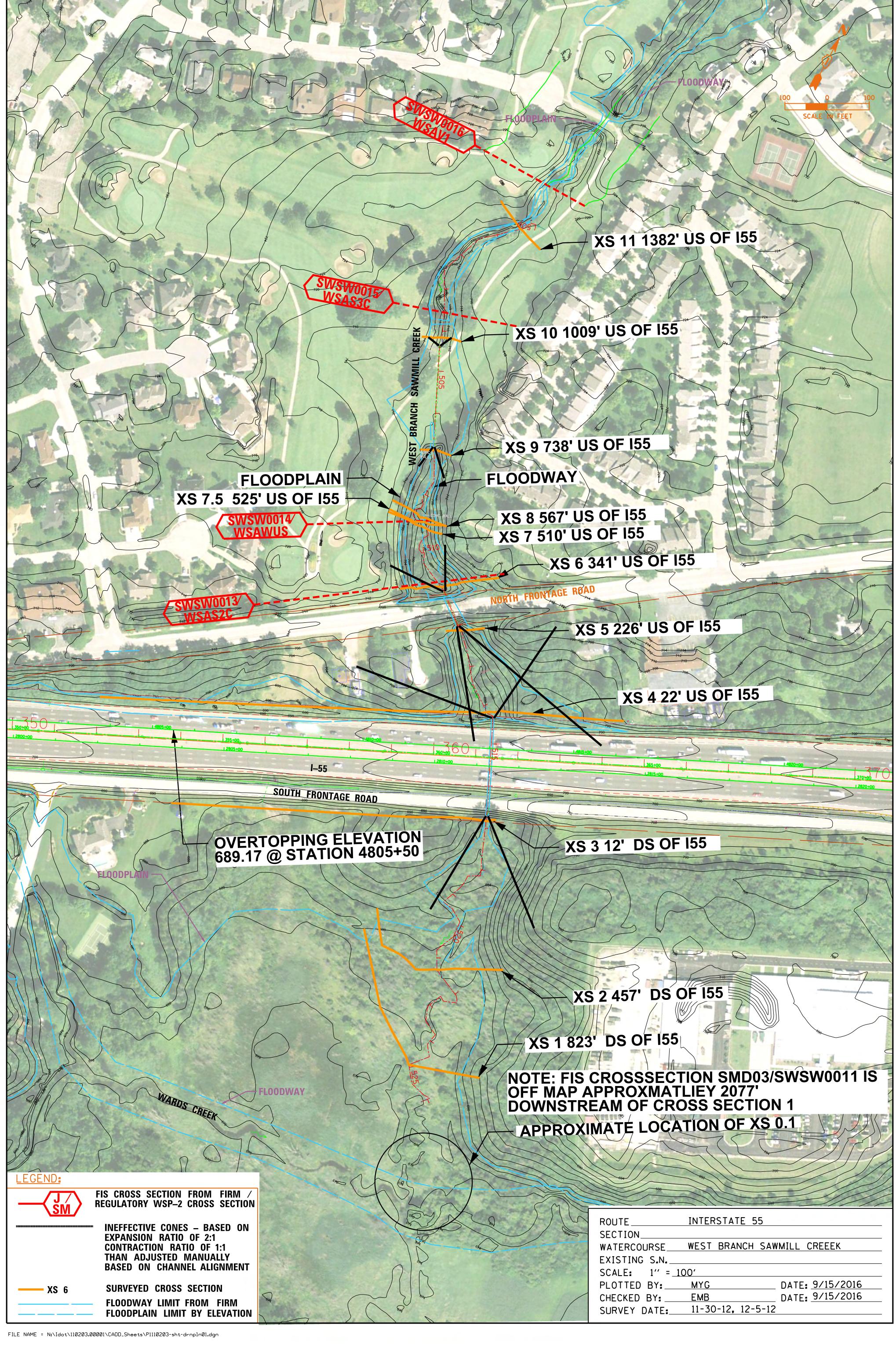
Please refer to Section 9 for Full sized plan view of Stream bed alignment.

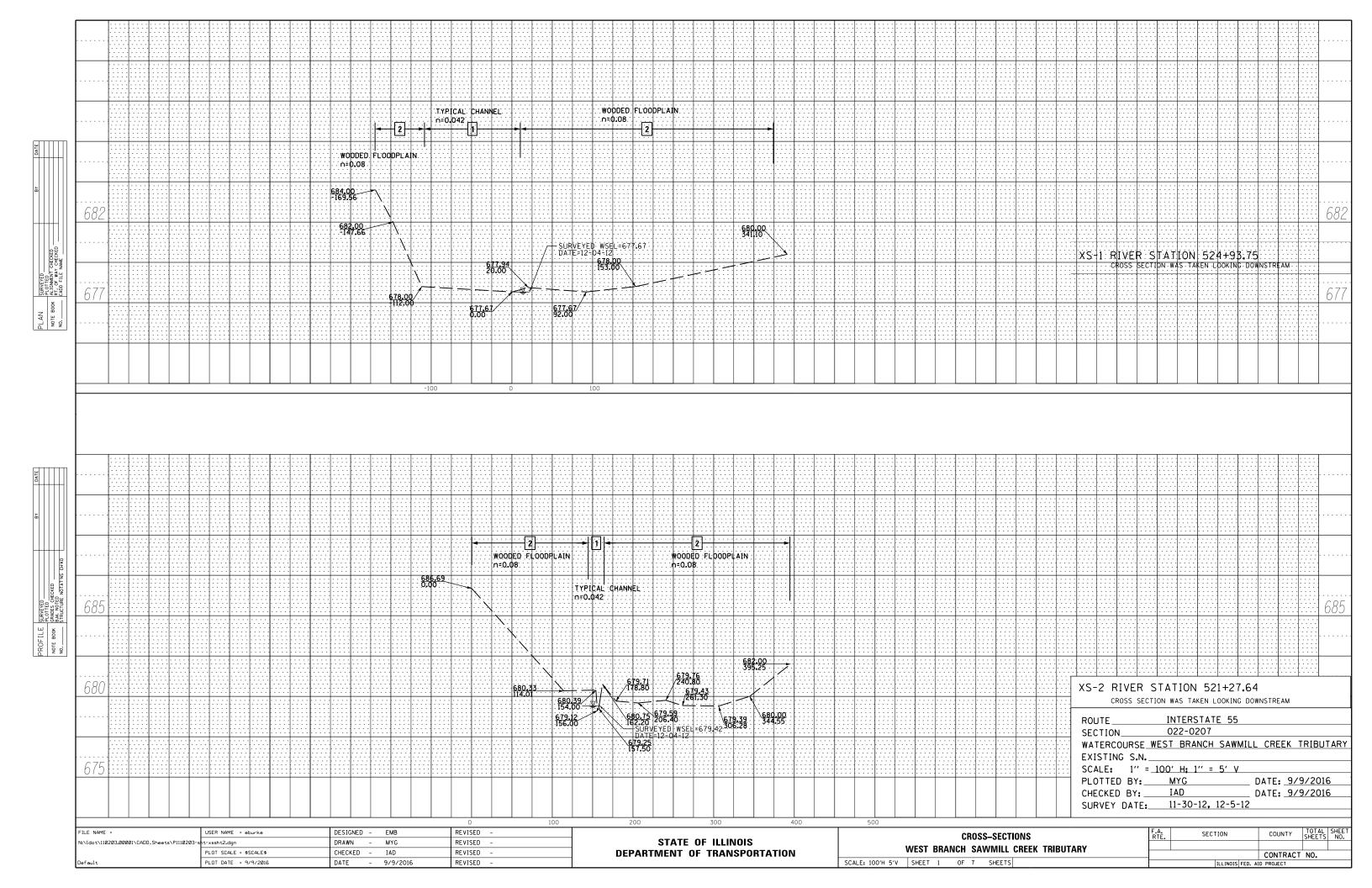

FILE NAME =

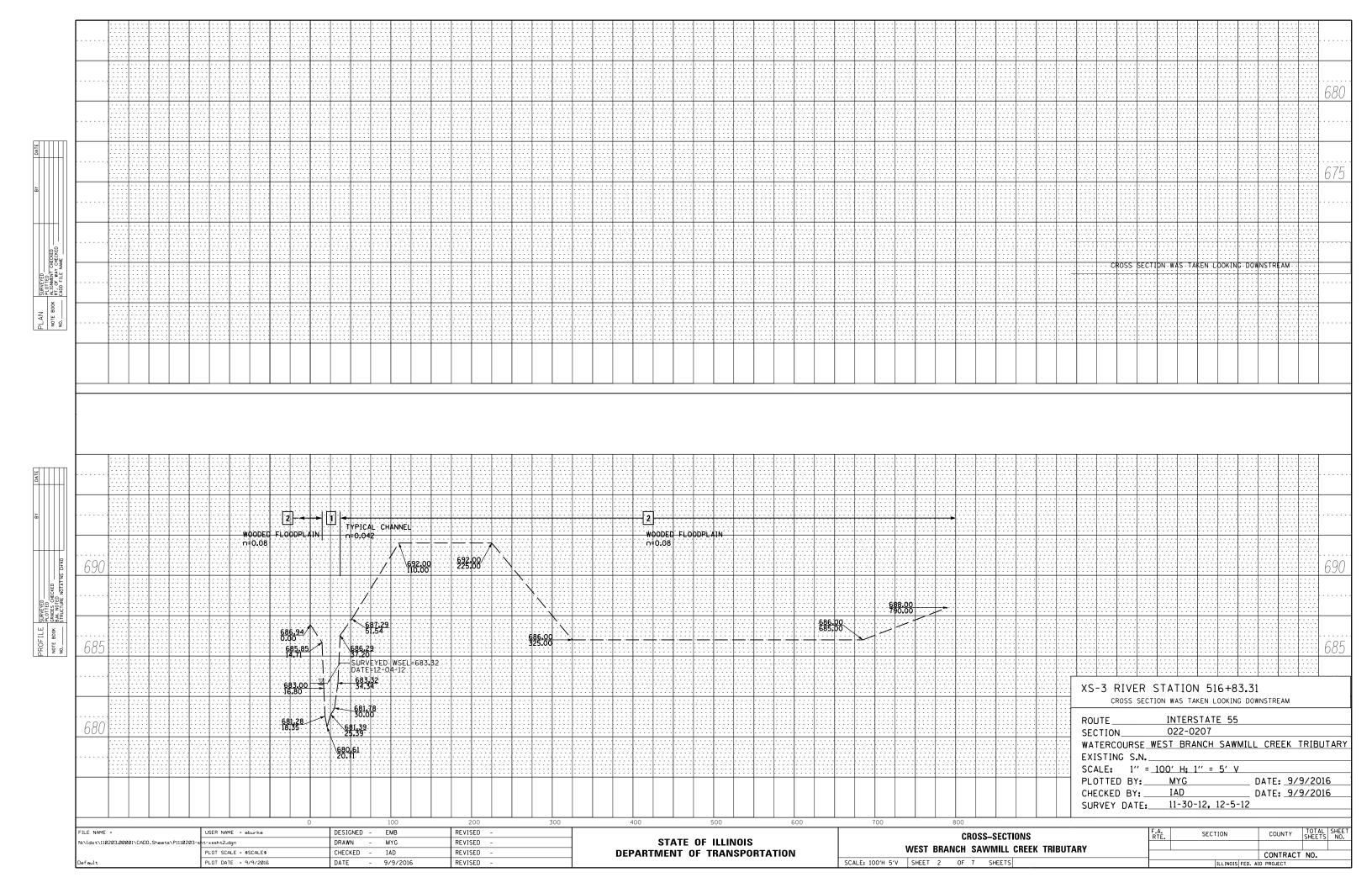

EXHIBIT 4.5

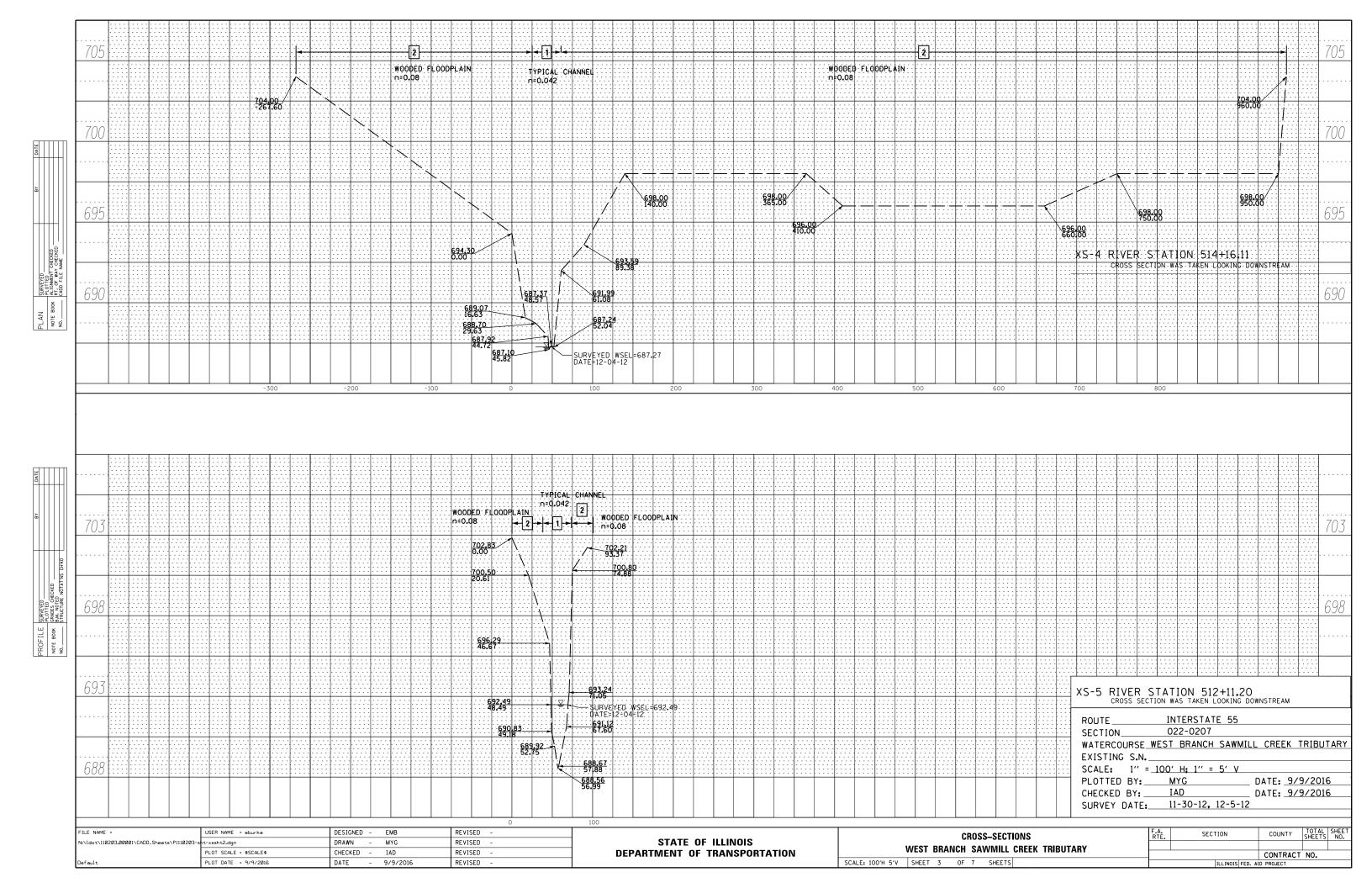
BY CBBEL DATED: 12-04-12 AND 12-05-12

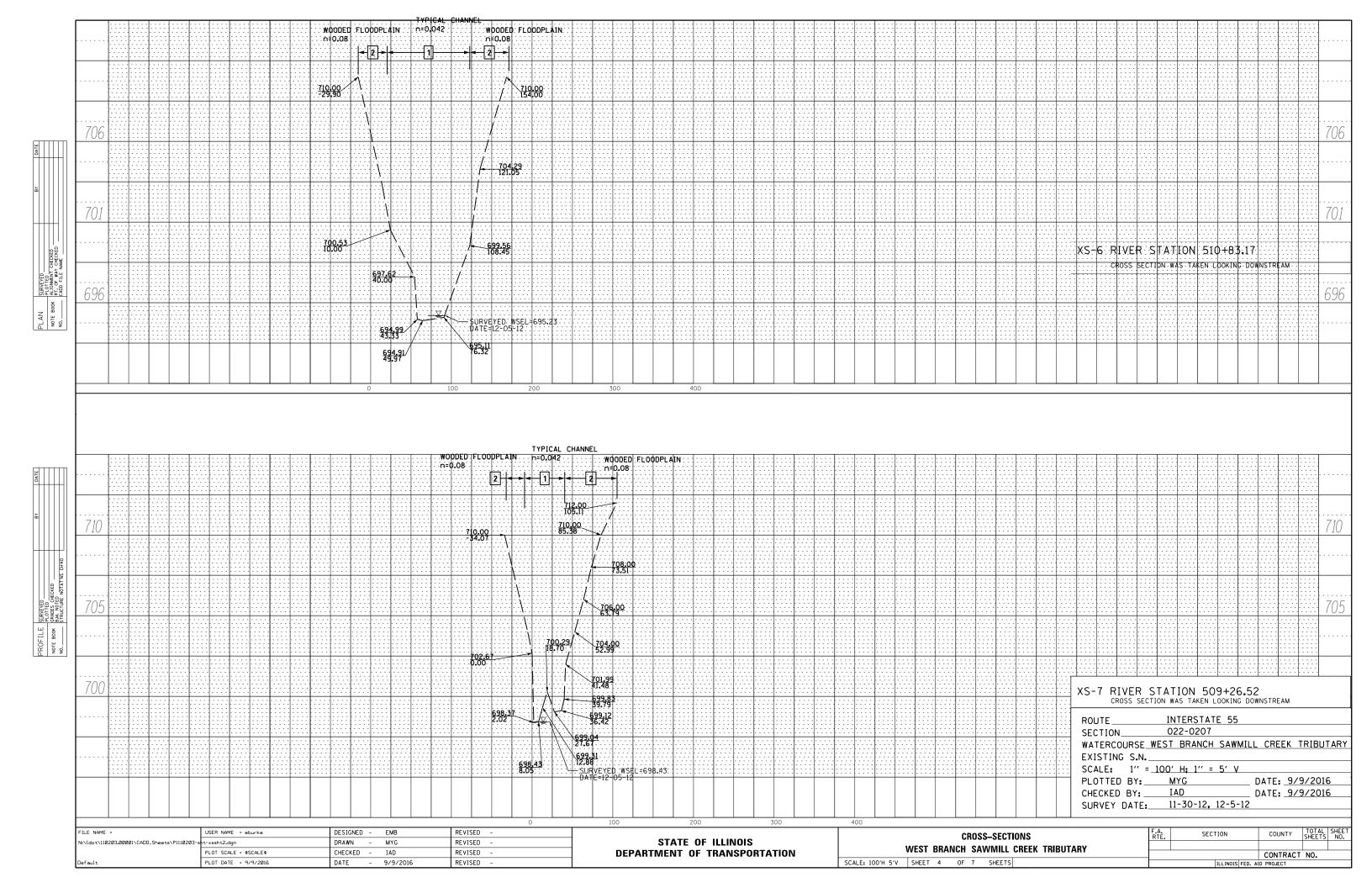
TAB 8

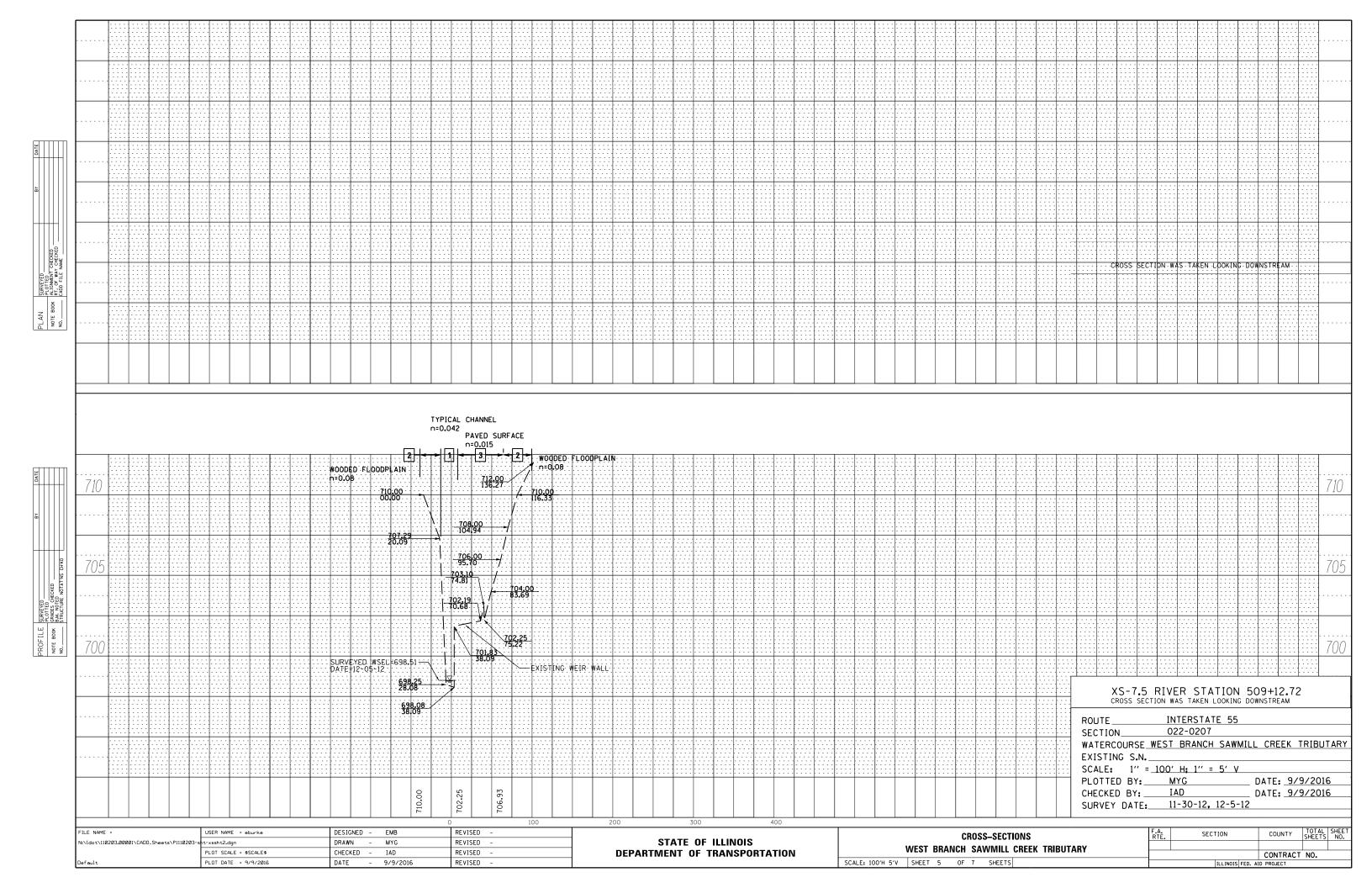

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 8
	ROADWAY PLAN AND PROFILE
C B	

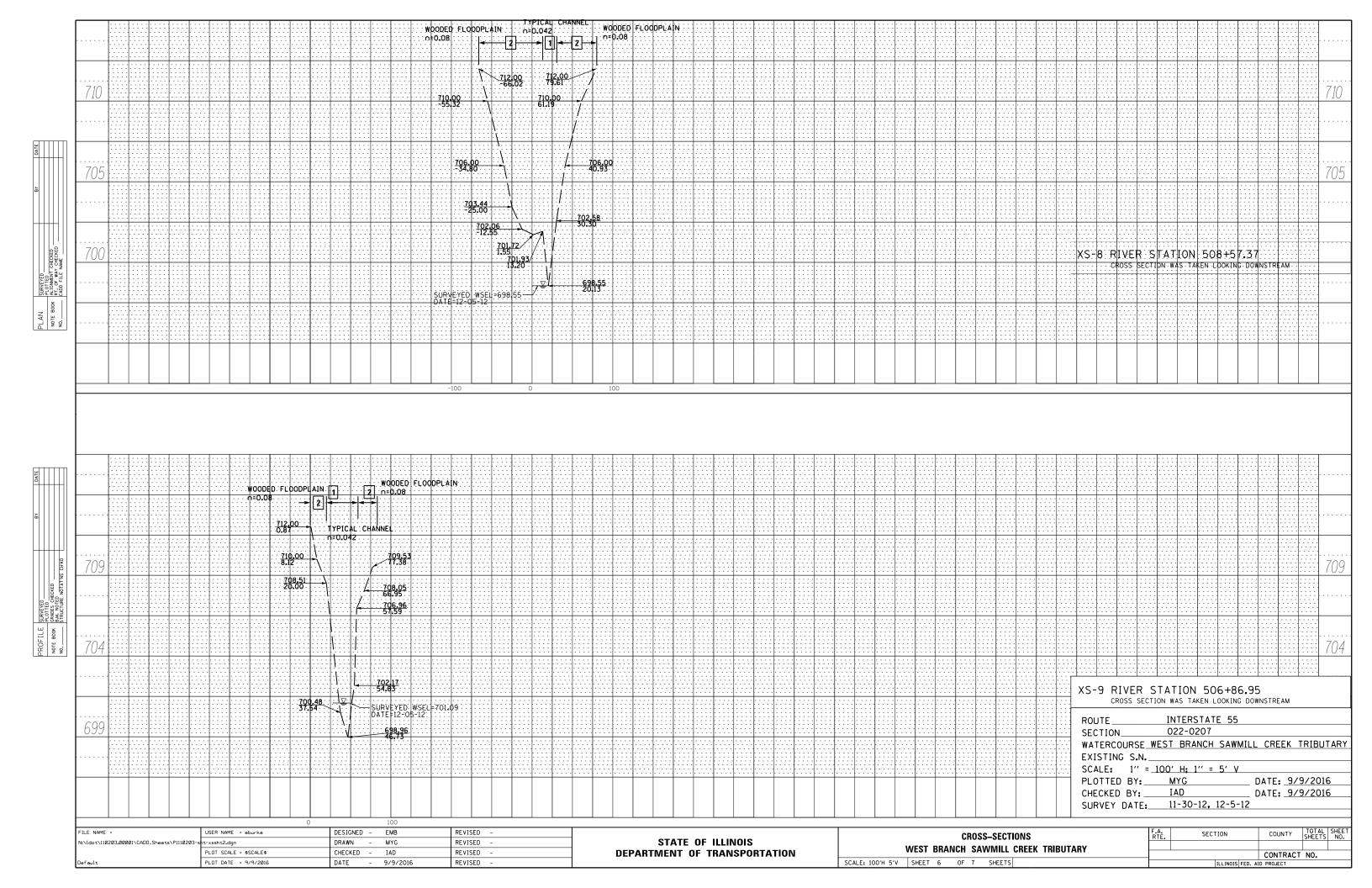


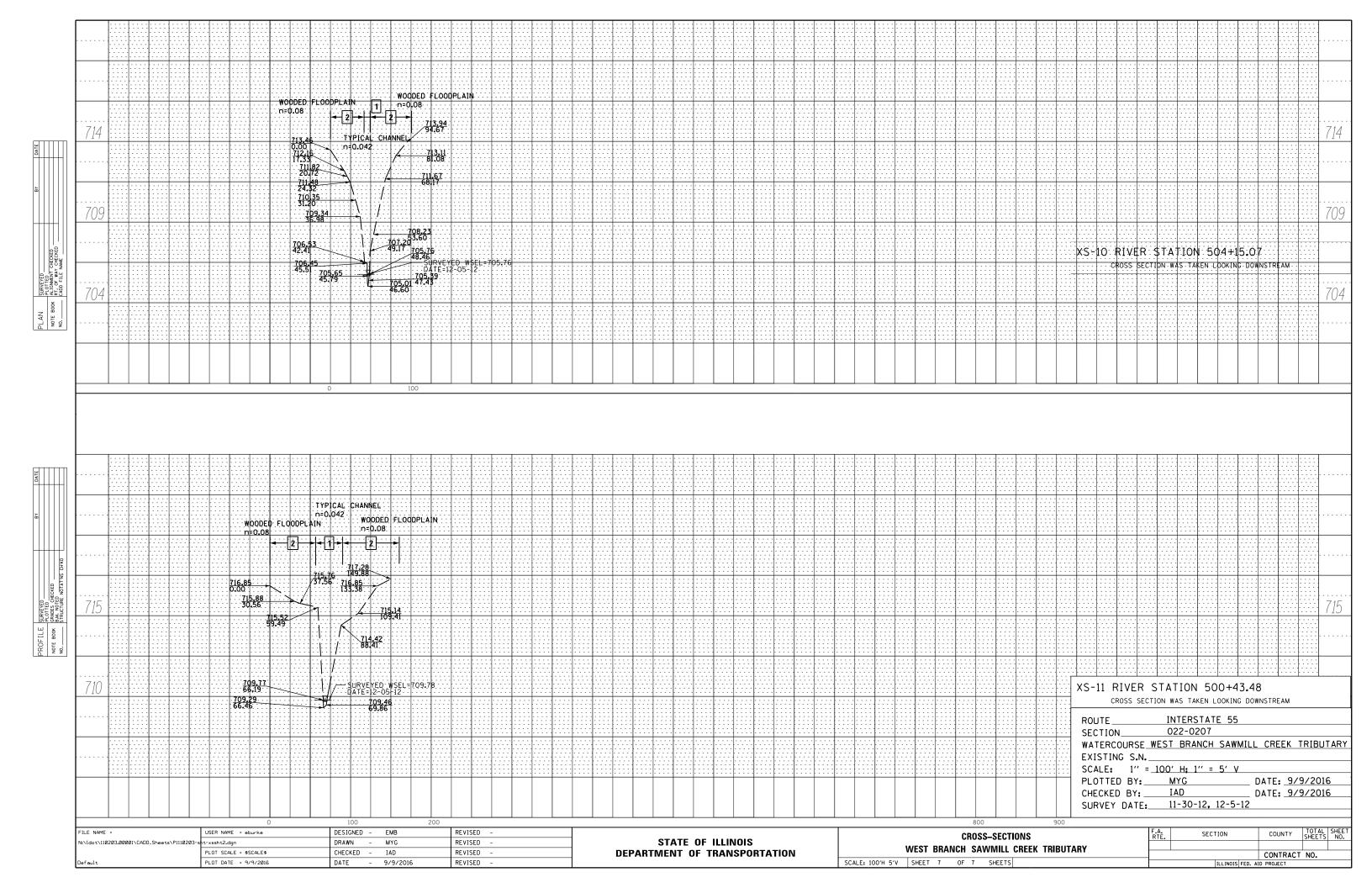


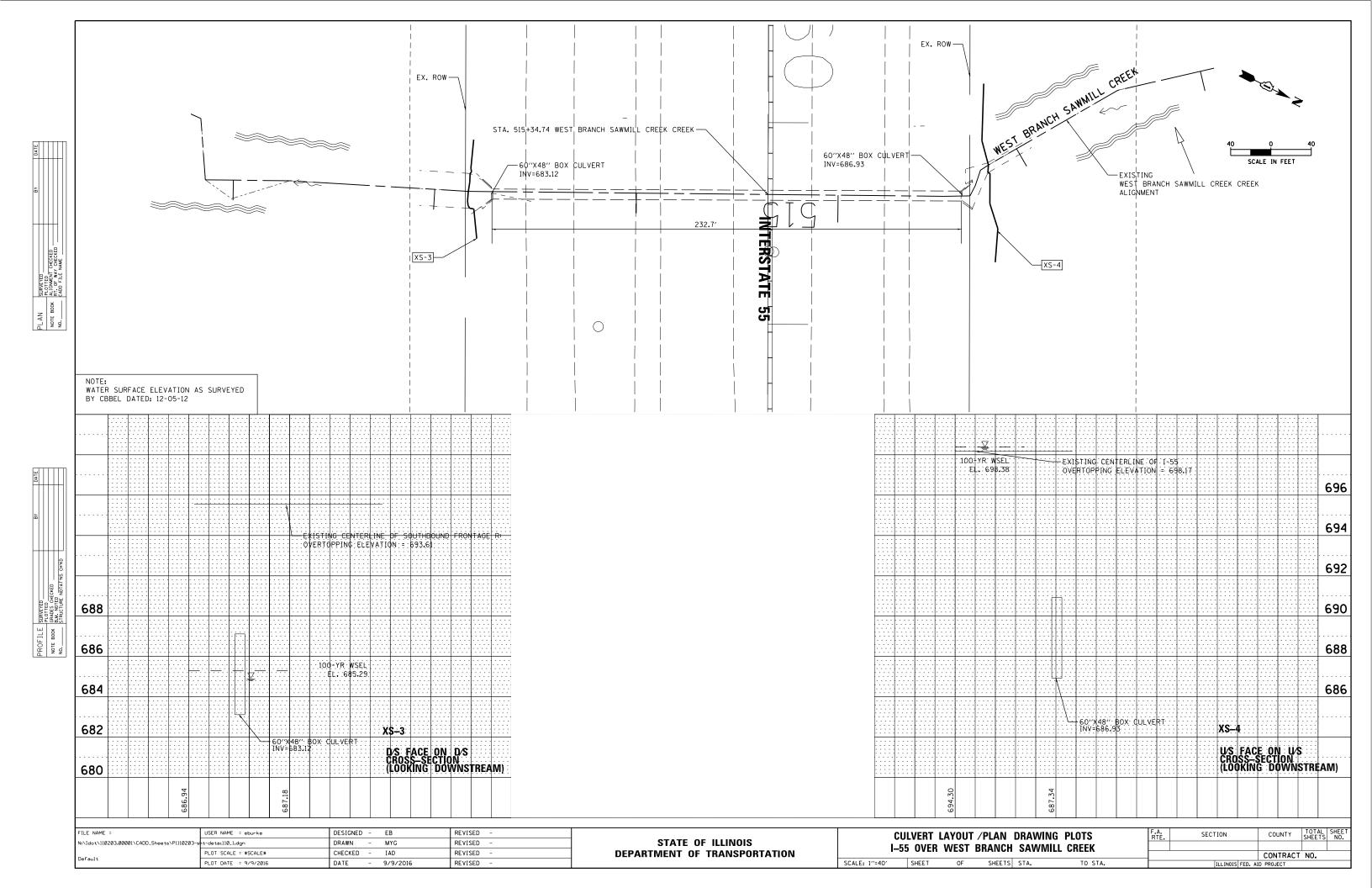

TAB 9

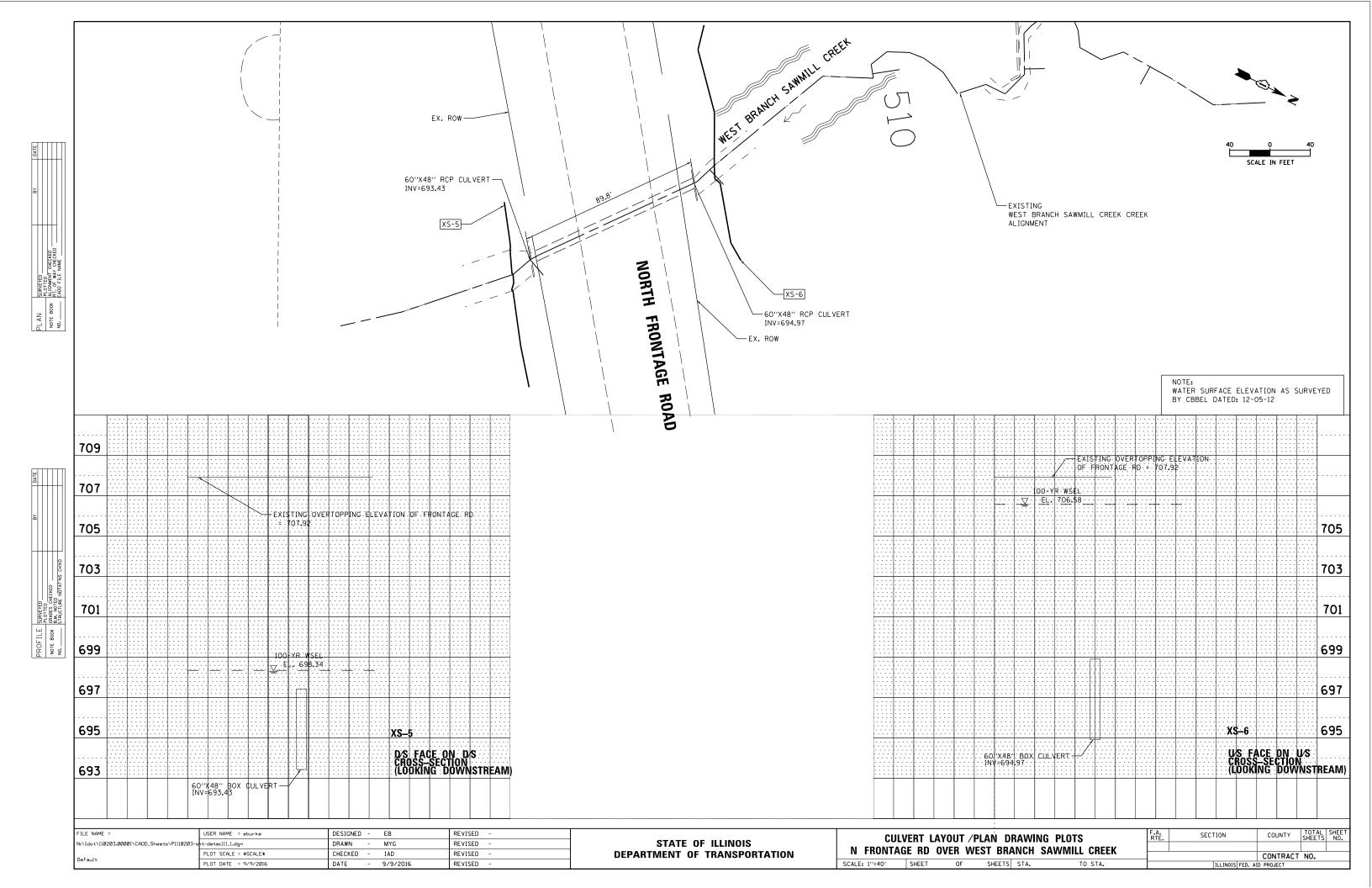

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 9
	<u>SECTION 9</u>
	CROSS SECTION LOCATION MAP AM CROSS SECTION PLOTS
CBB	









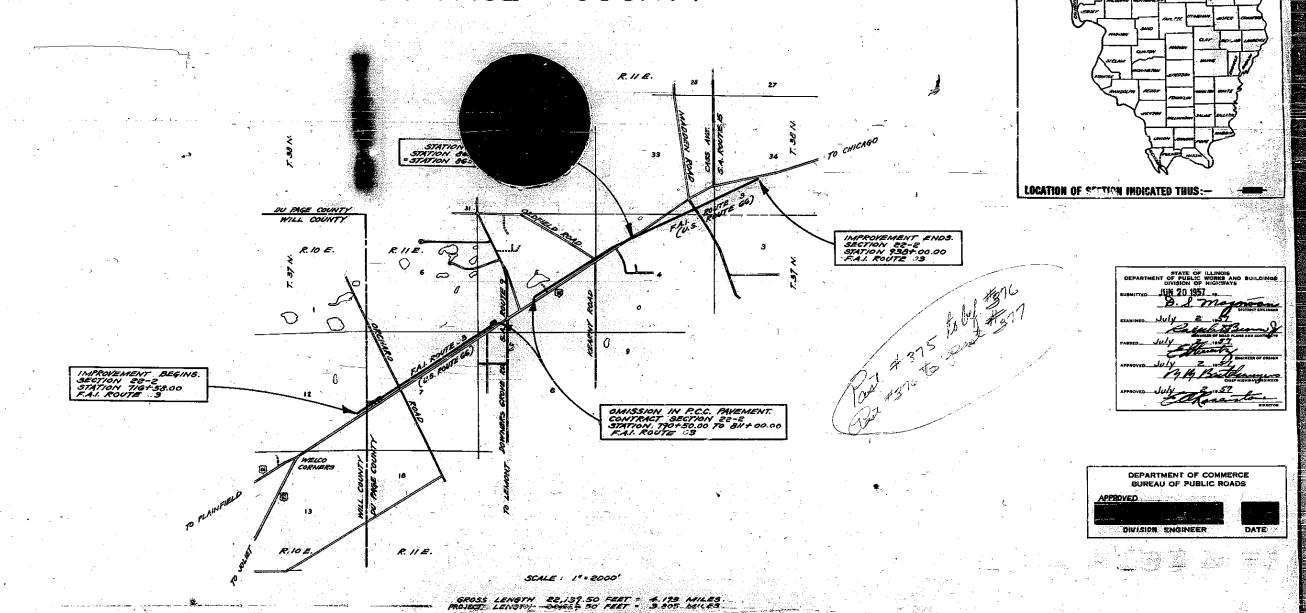


	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 10
	CULVERT LAYOUT / PLAN DRAWING PLOTS
S B	

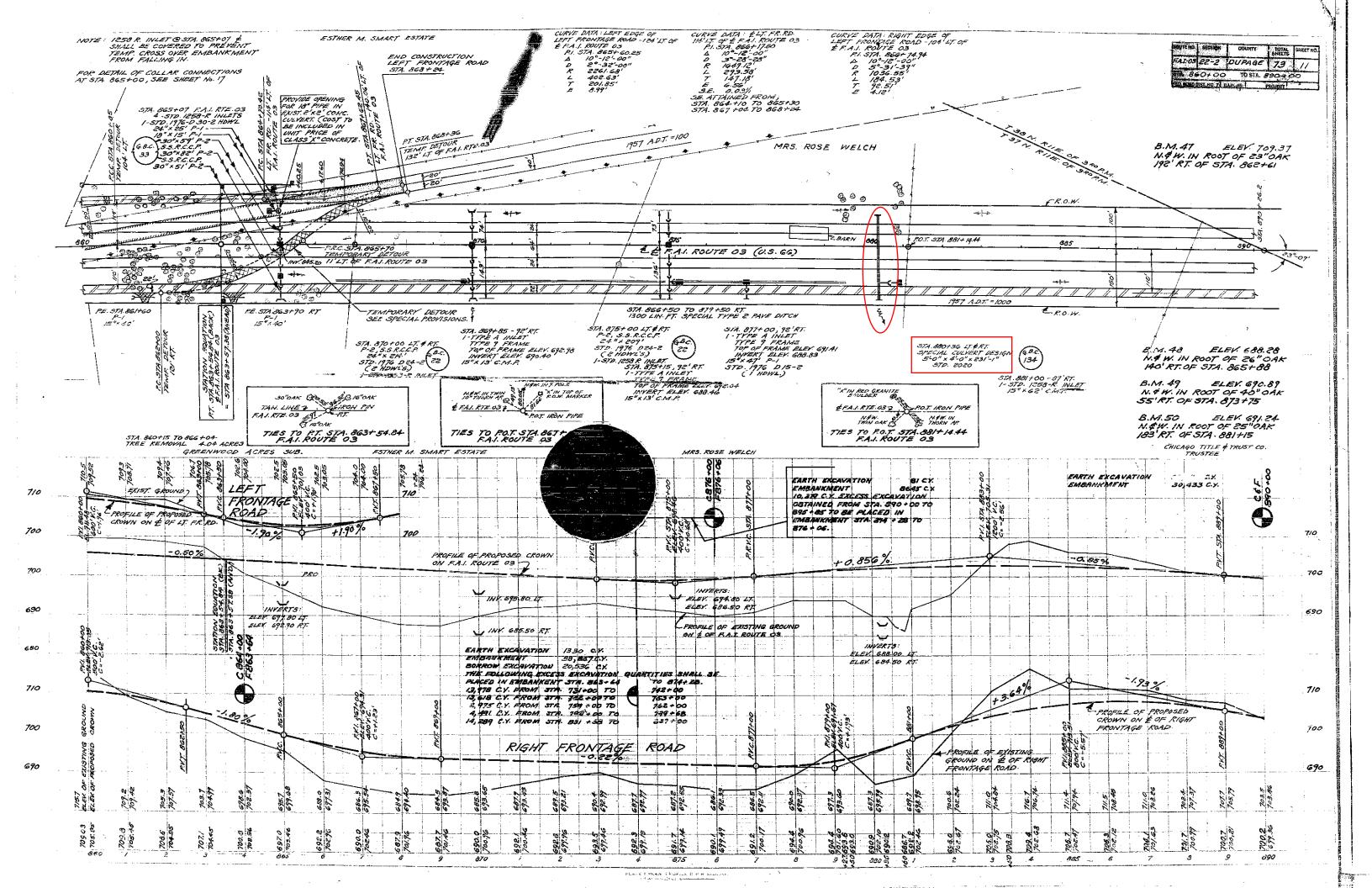
STATE OF ILLINOIS DEPARTMENT OF PUBLIC WORKS AND BUILDINGS DIVISION OF HIGHWAYS PLANS FOR PROPOSED FEDERAL AID HIGHWAY

F.A.I. ROUTE 3 SECTION 22-2

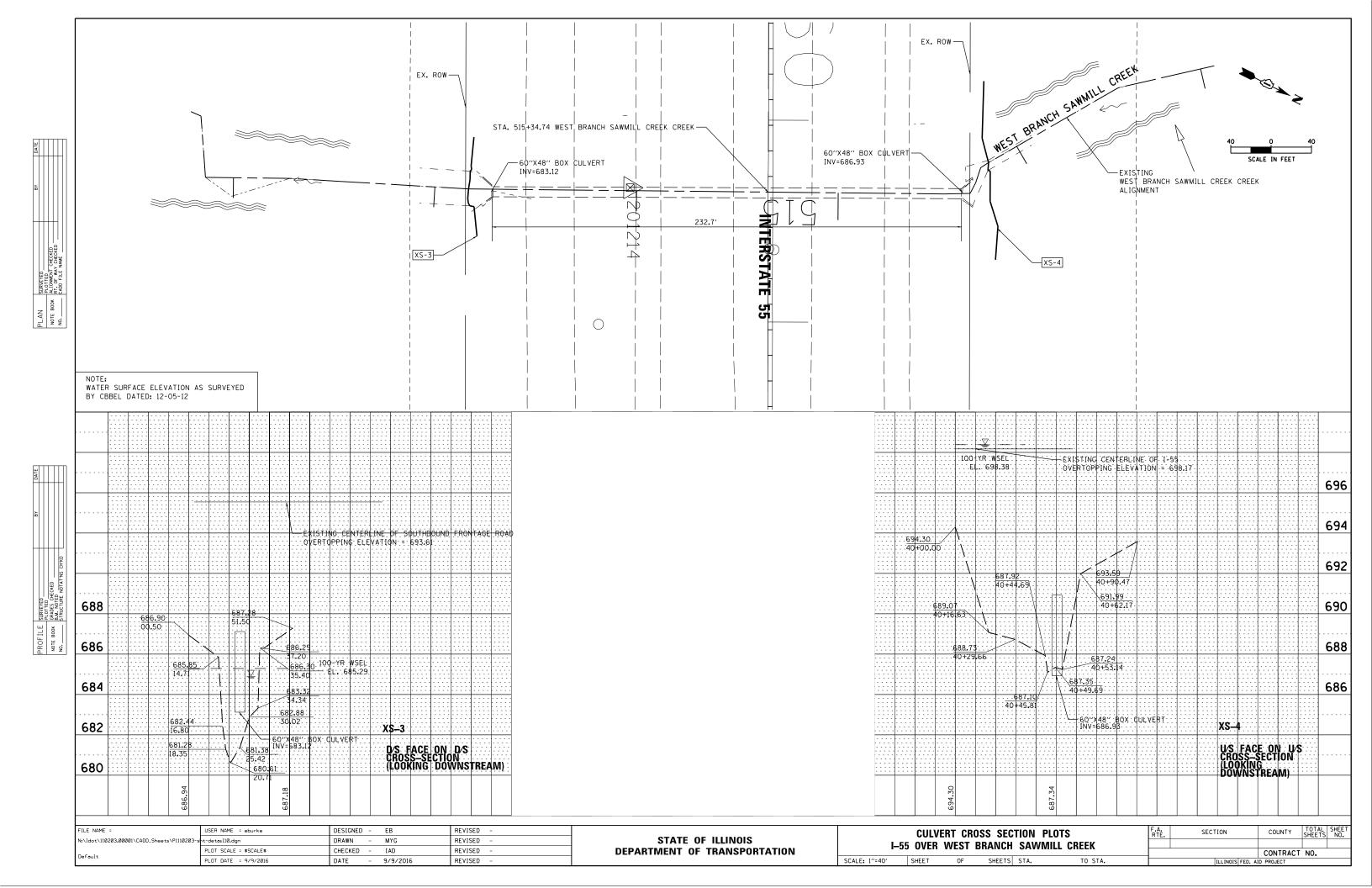
PROJECT I = 0.071.

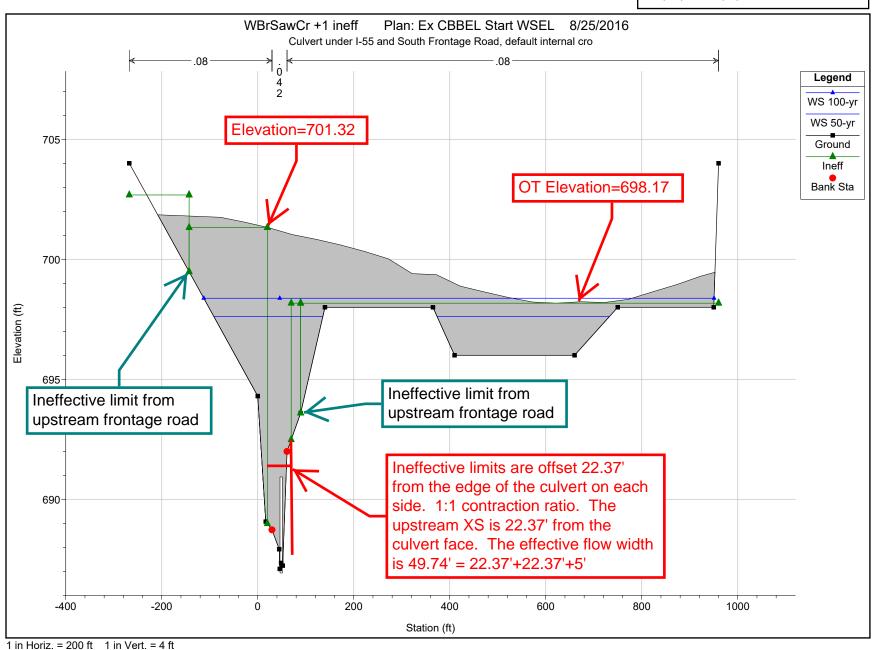

PROJECT I = 0.071.

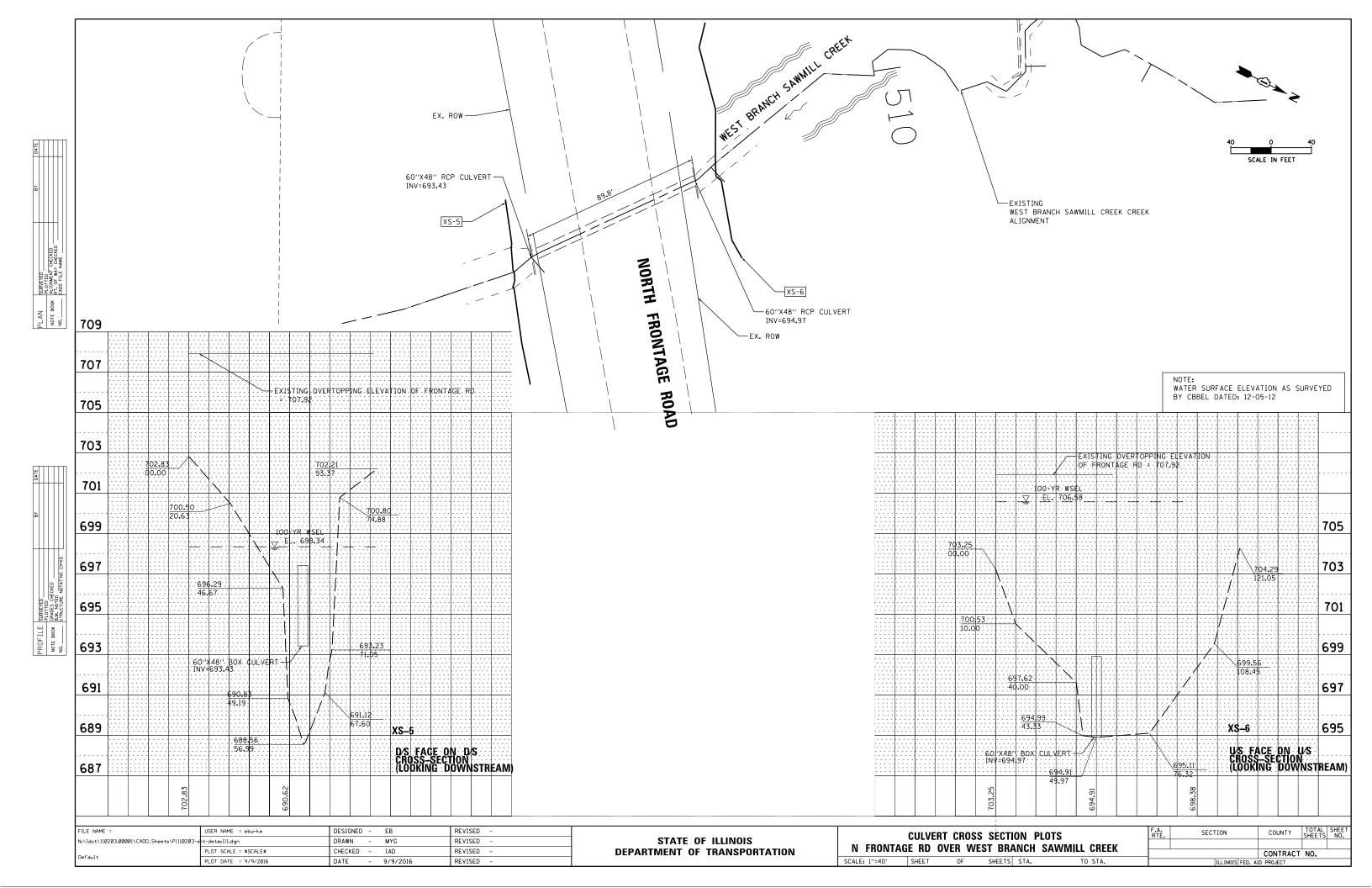
PROJECT I = 0.071.


PROJECT I = 0.071.

PROJECT I = 0.03.


DU PAGE COUNTY




FAI 03 22-2 DU PAGE 13

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek **SECTION 11** CULVERT CROSS SECTION PLOTS -**EXISTING CONDITIONS**

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek **SECTION 12** CULVERT CROSS SECTION PLOTS -PROPOSED CONDITIONS

CULVERT CROSS SECTION PLOTS – PROPOSED CONDITIONS

There are no proposed modifications to the existing culvert. Please refer to Section 11 for the existing culvert plots.

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 13
	HYDRAULIC ANALYSES
gB	

I-55 Managed Lanes

EXISTING CONDITIONS WSEL SUMMARY TABLE

West Branch Sawmill Creek

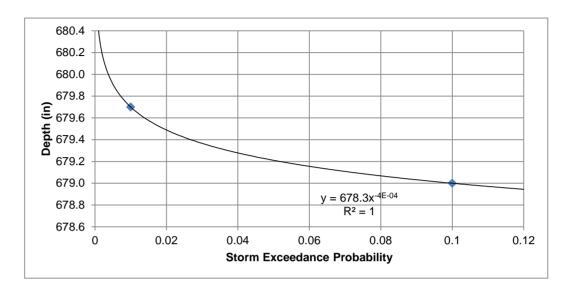
HEC-RAS HYDRAULIC MODEL RESULTS VS. 1977 DuPage Co. WSP2

 orig.
 updated
 updated
 updated

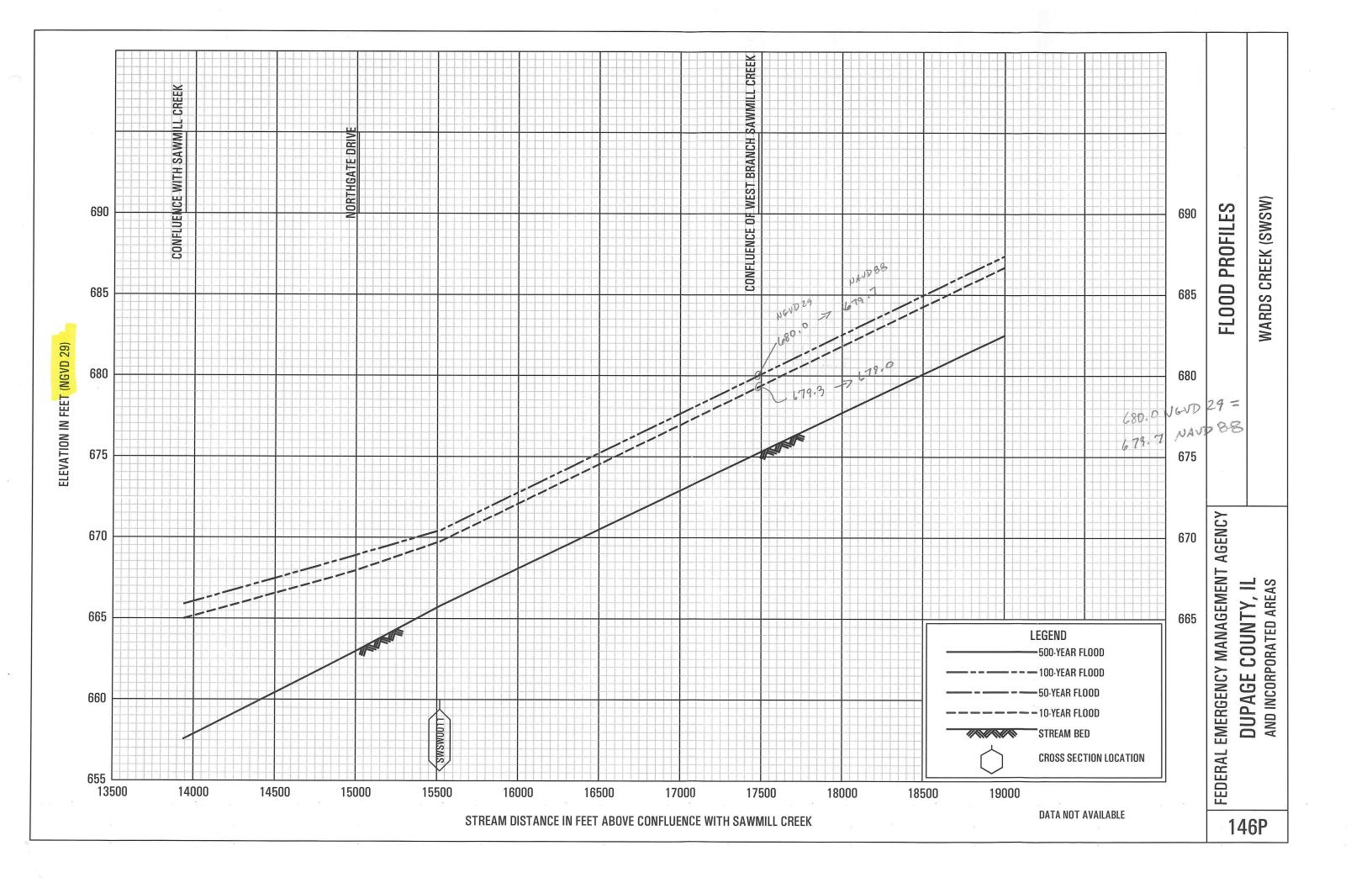
 iad, CBBEL
 emb, CBBEL
 emb, CBBEL
 iad, CBBEL

 8/20/2015
 2/10/2016
 5/26/2016
 8/26/2016

WATERWAY	HEC-RAS	HEC-RAS	WSP2 / Survey	DPC FIS	WSP2 HC	WSP2 HC	HEC-RAS	WSP2 HC	WSP2 HC	HEC-RAS
	REACH	XS ID	XS Reference	XS Ref. *	10-YR WSEL	10-YR WSEL	10-YR WSEL	50-YR WSEL	50-YR WSEL	50-YR WSEL
					NGVD29	NAVD 88	714.22	NGVD 29	NAVD 88	NAVD 88
W. Br. Sawmill Ck.	I-55	11.5	WSAV1	SWSW 0016	714.4	714.1	711.85	715.0	714.7	714.70
W. Br. Sawmill Ck.	I-55	11.0	XS 11				711.61			712.49
W. Br. Sawmill Ck.	I-55	10.5	WSAS3C	SWSW 0015	709.7	709.4	711.51	711.3	711.0	712.18
W. Br. Sawmill Ck.	I-55	10.0	XS 10				711.51			711.98
W. Br. Sawmill Ck.	I-55	9.1	WSAS3R / Access Rd.							
W. Br. Sawmill Ck.	I-55	9.0	WSAS2A / XS 9		703.7	703.4	703.45	704.6	704.3	703.94
W. Br. Sawmill Ck.	I-55	8.0	WSAWV2 / XS 8	SWSW 0014	703.6	703.3	701.99	704.6	704.3	703.35
W. Br. Sawmill Ck.	I-55	7.5	WSAWUS / WSAWDS / Weir				700.86			703.37
W. Br. Sawmill Ck.	I-55	7.0	WSAWV1 / XS 7		702.0	701.7	701.11	704.6	704.3	703.43
W. Br. Sawmill Ck.	I-55	6.0	WSAS2C / XS 6	SWSW 0013	700.8	700.5	701.11	704.6	704.3	703.42
W. Br. Sawmill Ck.	I-55	5.1	WSAS2R / N. Frontage Rd.							
W. Br. Sawmill Ck.	I-55	5.0	WSAS1C / XS 5		692.4	692.1	693.07	695.2	694.9	697.61
W. Br. Sawmill Ck.	I-55	4.0	XS 4				693.07			697.62
W. Br. Sawmill Ck.	I-55	3.1	WSAS1R / I-55							
W. Br. Sawmill Ck.	I-55	3.0	XS 3				684.22			684.99
W. Br. Sawmill Ck.	I-55	2.0	XS 2				679.96			680.07
W. Br. Sawmill Ck.	I-55	1.0	XS 1				679.22			679.64
W. Br. Sawmill Ck. ¹	I-55	0.15	Copy of CBBEL XS 1 extended with 2' topo for use as assumed XS at confluence with Wards Creek. No vertical adjustment to XS 0.15 to be conservative.		-	-	679.00	-	-	679.40
W. Br. Sawmill Ck.	I-55	0.100	SMD03		669.80	669.50	-	670.20	669.90	-


WATERWAY	HEC-RAS	HEC-RAS WSP2		DPC FIS	2004 FIS	WSP2 HC	WSP2 HC	HEC-RAS	WSP2 HC	WSP2 HC	HEC-RAS
	REACH	XS ID	XS Reference	XS Ref. *	100-YR WSEL	100-YR WSEL	100-YR WSEL	100-YR WSEL	500-YR WSEL	500-YR WSEL	500-YR WSEL
					NGVD29	NGVD 29	NAVD 88	NAVD 88	NGVD 29	NAVD 88	NAVD 88
W. Br. Sawmill Ck.	I-55	11.5	WSAV1	SWSW 0016	715.1	715.1	714.8	714.90	715.5	715.2	715.46
W. Br. Sawmill Ck.	I-55	11.0	XS 11					712.75			713.34
W. Br. Sawmill Ck.	I-55	10.5	WSAS3C	SWSW 0015	711.5	711.5	711.2	712.39	711.7	711.4	713.04
W. Br. Sawmill Ck.	I-55	10.0	XS 10					712.14			712.66
W. Br. Sawmill Ck.	I-55	9.1	WSAS3R / Access Rd.								
W. Br. Sawmill Ck.	I-55	9.0	WSAS2A / XS 9			707.3	707.0	706.48	708.5	708.2	708.46
W. Br. Sawmill Ck.	I-55	8.0	WSAWV2 / XS 8	SWSW 0014	707.3	707.3	707.0	706.58	708.5	708.2	708.44
W. Br. Sawmill Ck.	I-55	7.5	WSAWUS / WSAWDS / Weir					706.58			708.44
W. Br. Sawmill Ck.	I-55	7.0	WSAWV1 / XS 7			707.3	707.0	706.59	708.5	708.2	708.45
W. Br. Sawmill Ck.	I-55	6.0	WSAS2C / XS 6	SWSW 0013	707.3	707.3	707.0	706.58	708.5	708.2	708.45
W. Br. Sawmill Ck.	I-55	5.1	WSAS2R / N. Frontage Rd.								
W. Br. Sawmill Ck.	I-55	5.0	WSAS1C / XS 5			697.1	696.8	698.34	701.5	701.2	698.53
W. Br. Sawmill Ck.	I-55	4.0	XS 4					698.38			698.60
W. Br. Sawmill Ck.	I-55	3.1	WSAS1R / I-55								
W. Br. Sawmill Ck.	I-55	3.0	XS 3					685.29			685.98
W. Br. Sawmill Ck.	I-55	2.0	XS 2					680.12			680.25
W. Br. Sawmill Ck.	I-55	1.0	XS 1					679.90			680.24
W. Br. Sawmill Ck. ¹	I-55	0.15	Copy of CBBEL XS 1 extended with 2' topo for use as assumed XS at confluence with Wards Creek. No vertical adjustment to XS 0.15 to be conservative.			1	1	679.70	1	,	680.00
W. Br. Sawmill Ck.	I-55	0.100	SMD03			670.3	670	-	670.7	670.4	-

^{*} FIS mapped cross section locations approximated to appropriate WSP-2 section by location and distance.


^{1.} Starting water surface elevations interpolated from FIS Flood Profiles. See Hydology in Section 6.

Flow Rates									
Storm Exceedance Probability	FIS WSEL (NAVD88)	Calculated WSEL							
0.5		678.5							
0.1	679.0	678.9							
0.03		679.2							
0.02		679.4							
0.01	679.7	679.6							
0.005		679.7							
0.002		680.0							
	Storm Exceedance Probability 0.5 0.1 0.03 0.02 0.01 0.005	Storm Exceedance Probability							

Note: 2-, 30-, and 200-year WSELs interpolated/extrapolated using a power regression trendline.

West Branch Sawmill Creek starting WSELs from DuPage County FIS Wards Creek flood profile, March 2007

Expansion Reach Lengths

In some types of studies, a high level of sophistication in the evaluation of the transition reach lengths is not justified. For such studies, and for a starting point in more detailed studies, Table B-2 offers ranges of expansion ratios, which can be used for different degrees of constriction, different slopes, and different ratios of overbank roughness to main channel roughness. Once an expansion ratio is selected, the distance to the downstream end of the expansion reach (the distance Le on Figure B-1) is found by multiplying the expansion ratio by the average obstruction length (the average of the distances A to B and C to D from Figure B-1). The average obstruction length is half of the total reduction in floodplain width caused by the two bridge approach embankments. In Table B-2, b/B is the ratio of the bridge opening width to the total floodplain width, nob is the Manning n value for the overbank, nc is the n value for the main channel, and S is the longitudinal slope. The values in the interior of the table are the ranges of the expansion ratio. For each range, the higher value is typically associated with a higher discharge.

Table B-2 Ranges of Expansion Ratios

		nob / nc = 1	nob / nc = 2	nob / nc = 4
b/B = 0.10	S = 1 ft/mile 5 ft/mile 10 ft/mile	$ \begin{array}{r} 1.4 - 3.6 \\ 1.0 - 2.5 \\ 1.0 - 2.2 \end{array} $	1.3 – 3.0 0.8 – 2.0 0.8 – 2.0	$ \begin{array}{c} 1.2 - 2.1 \\ 0.8 - 2.0 \\ 0.8 - 2.0 \end{array} $
b/B = 0.25	S = 1 ft/mile	1.6 – 3.0	1.4 - 2.5	1.2 - 2.0
	5 ft/mile	1.5 – 2.5	1.3 - 2.0	1.3 - 2.0
	10 ft/mile	1.5 – 2.0	1.3 - 2.0	1.3 - 2.0
b/B = 0.50	S = 1 ft/mile	1.4 - 2.6	1.3 – 1.9	1.2 - 1.4
	5 ft/mile	1.3 - 2.1	1.2 – 1.6	1.0 - 1.4
	10 ft/mile	1.3 - 2.0	1.2 – 1.5	1.0 - 1.4

The ranges in Table B-2, as well as the ranges of other parameters to be presented later in this appendix, capture the ranges of the idealized model data from this study. Another way of establishing reasonable ranges would be to compute statistical confidence limits (such as 95% confidence limits) for the regression equations. Confidence limits in multiple linear regression equations have a different value for every combination of values of the independent variables (Haan, 1977). The computation of these limits entails much more work and has a more restricted range of applicability than the corresponding limits for a regression, which is based on only one independent variable. The confidence limits were, therefore, not computed in this study.

Extrapolation of expansion ratios for constriction ratios, slopes or roughness ratios outside of the ranges used in this table should be done with care. The expansion ratio should not exceed 4:1, nor

Project #: 11-203.00001

Stream: West Branch Sawmill Creek

Route: I-55
By: EMB
Date: 8/16/2016
Structure: I-55

Structure Opening Width: 5

Expansion Ratio: 2
Contraction Ratio: 1
Top of Structure Opening D/S: 687.12

Upstream Downstream

 Left Overtopping
 701.32
 694.22

 Right Overtopping
 698.17
 692.65

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
5	226.37	502.48	Wider than Channel Width
4	22.37	49.74	N. Frontage Road Ineffectives encroach
3.1 I-55	-	5	-
3	11.89	16.89	-
2	445	461.89	Wider than Channel Width

Project #: 11-203.00001

Stream: West Branch Sawmill Creek

Route: I-55 By: EMB Date: 8/16/2016

Structure: North Frontage Road

5 Structure Opening Width:

Expansion Ratio: 2 Contraction Ratio: 1 697.43 Top of Structure Opening D/S:

Upstream Downstream 702.68 Left Overtopping 707.92 **Right Overtopping** 702.68 707.92

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
7	183	397	Wider than Channel Width
6	13	31	-
5.1 North Frontage Road	-	5	-
5	11.7	16.7	-
4	215.7	232.4	Ineffective area overlaps with I-55 ineffectives
3.1	I-55 Culvert		

Project #: 11-203.00001

Stream: West Branch Sawmill Creek

Route: I-55 By: EMB Date: 8/16/2016 Structure: Access Road

Structure Opening Width: 3.5

Expansion Ratio: 2 Contraction Ratio: 1 704.93 Top of Structure Opening D/S:

Upstream Downstream Left Overtopping 707.83 710.72 707.97 **Right Overtopping** 711

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
11	74	200.64	Wider than Channel Width
10	24.57	52.64	-
9.1 Access Road	-	3.5	-
9	6.02	9.52	-
8	177.02	186.54	Wider than Channel Width

TAB A

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
SECTION 13.A
BASELINE (FEMA) WSP- 2 Model (NGVD 1929)

WSP2 TITLE TITLE			RANCE STUDY TERN TRIB		FINAL	
DISCHARGE	-1.0	10		100 500	, , , , , , , , , , , , , , , , , , , ,	
STARTE	SMD03	669.8	670.2	570.3 670.7	(1) AGREES WY DARIEN FIS 1989	
	SMD03	1290	923 0	780 478	1) HOREBE OUT PRICIPIO I'M	
	WSASIC	495	923	290 178		
FLOW-FREQ		495	345	90 178	EVENATIONS AGREEN	DARIEN FU 1989
FLOW-FRED		495		290 178		·)
FLOW-FREQ		495		290 178		CAM /
FLOW-FREQ		495		290 178		8410
FLOW-FREQ	SVWAEW	495	345	290 178		la/
FLOW-FREQ	MSASZA	495	345	290 178		7151
FLOW-FREQ		495	345	290 178		10/60
FLOW-FREQ		420		245 149		/ 1' /
FLOW-FREQ		420		245 149		
FLOW-FREG		420		245 149		
FLOW-FREQ		420		245 149		
FLOW-FRED		420	alle alle .	245 149		
FLOW-FREQ		420		149		
FLOW-FREQ		402	7007 "" (A7 " - (A	238 146	superseded by 1979 run inserting "L" ; "M" sections	
FLOW-FREG		402		238 146 }		
	WSAV4	199		118 72 J	5 UPERSEDED BY LOMR 96-05-279 + (11/26/1997)	
REACH	SMD03	5.12		XS 0.1	[= I-55?] -ws/15ws	
ROAD	WSAS1R	2.7		2800 <u>I-55</u>		
REACH	WSAS1C	0.75		70 N. Frontage	Road	
ROAD	WSAS2R	2.7		i mar and	Noau	
	WSAS2C A	0.75		75		
REACH	WSAWV1	0.75	169 1	69		
REACH	WSAWDS	0.75	1			
	WSAWUS	0.75				
REACH	SVWARW	0.75	48	; : D:		
	WSASZA.	0.75		18 3 5		
ROAD	WSAS3R	2.7				
	WSAS3C WSAV1	0.75		25 120		
ROAD	WSAS5R	2.7		93		
	WSASSC	0.58		50		
ROAD	WSAS6R	2.7		955		
	WSAS6V	0.58		5 5		
ROAD	WSAS6A	2.7		1.5		
	WSAS6B	0.58		5 0		
ROAD	WSASAC	e - 1	1 1 54	1 3d		
ROAD REACH 12	WSAS6C WSAS6D	2.7 0.58		. 19 25		

-	****		80/8	O LIST O	F INPUT DAT	[A	******	****
ROAD	WSAS6E	2.7	129	18				
REACH	WSAS6F	0.58	35	35				
REACH	MSYAS	0.42	380	38				
REACH	WSAV3	0.44	725.		5.			e e e e e e e e e e e e e e e e e e e
REACH		.13	750.		0.			
REACH	M	, 13	680.		0.			
REACH	WSAV4	0.13	770.	77				
SEGMENT	SMD03	1	D	26	2.0			
NVALUE	0.080			***				•
SEGMENT	SMD03	2	C	5.0	0.0	•		
NVALUE	0.055		2	i i i e				
SEGMENT	SMD03	3	D	1 1	00.0			
NVALUE	0.080				4			
SECTION	SMD03	•						
		. 0	677.0	50.0	674.0	100.0	671.45MD03	
	150		669.4	500.0	669.2	595.0	668.78MD03	
	274		667.3	279.0	666,2	595.0	665.68MD03	
	285	.0	665,8	289.0	667.3	290.0	669.38MD03	
	400	. 0	668,5	500.0	668.9	600.0	670.1SMD03	
	700	.0	670.1	800.0	670.4	900.0	671.75MD03	
S.a.	1000	. 0	673.8	1100.0	678.1		SMD03	7 7
ENDTABLE								
CULV1	WSASIR	1	4111	1				
CULÁS	5.3	5.0	231.	0 68	7.1 684	4.4		
SECTION	WSASIR							
		0	701.9	100	701.4	500	701.1	
ENDTABLE								
SEGMENT	WSASIC	1		-8				
NVALUE	.045							
SEGMENT	WSASIC	2	¢	3				
NVALUE	.045	· .		***				•
SEGMENT	WSASIC	3	N	50				
NVALUE	.05							
SECTION	WSASIC						e e e e e e e e e e e e e e e e e e e	
the case and a second	•1	41	701.5	-140	701.5	-100	700.0	
	*	50	694.4	-25	692.9	-18	691.5	
		-8	690.1	• 7	689.2	*1	688.9	
			688.8	1	688.8	2	689.1	
		0 3	689.3	13	690.2	23	693.0	
		50	695.2	100	700.0	130	704.0	
ENDTABLE			and the second s		***			
CULVI	WSASZR	1	4111				*	
CULVS	4.2	1 5.3	89.7	69	5.4 693	. 8		

ECTION	WSASZR							
		0	709.7	50	709.2	100	708.1	•
		150	707.9	200	708,0			
NOTABLE								
EGMENT	WSASSC	1	N	-10				
VALUE	.045							
EGMENT	WSASEC	2	C	10				
VALUE	.045							
EGMENT	WSASEC	3	N	50				
VALUE	.05							
ECTION	MSV25C							
		-82	710.0	-81	710.0	# 8 O	710.0	
Λ		#50	706.2	-35	704.2	-25	701.7	
	*	1 0	700.0	* 6	699.7	-5	697.0	
1-1		-2	696.5	0	696.2	, 3	696.6	
, ,		3	698.8	10	699.3	25	699.6	
a-	•	35	702.0	50	704.6	80	710.0	•
NOTABLE	47-							
EGMENT	WSAWV1	1	N	-15				
VALUE	.045							
EGMENT	WSAWV1	2	C	25				
VALUE	.045							
EGMENT	WSAWV1	3	N	100				
VALUE	.05							
ECTION	WSAWV1	,						
		-50	710.0	-25	704.4	-24	703.6	
		~ 20	702.0	-18	701.4	- 15	701.6	
		*11 .	700.8	-8	700.7	- 2	700.6	•
		0	700.3	1	700,6	3	700.7	
		4	700.5	5	700.7		700.6	
Seg. 1		25	700.9	50	707.6	100	711.0	
NOTABLE				- 1				a a
EGMENT	ROMARM	1	N	-17				
VALUE	.045						·	
EGMENT	WSAWDS	2	C ·	17		*		
VALUE	.045							
EGMENT	WSAWDS	- 3	N	100			•	
VALUE	.05							
ECTION	WSAWDS	•				•		
		* 50	710.0	-24	704.4	-24	703.6	
		~20	708.2	-18	700.8	-17	700.8	
		-17	703.5	-14	703.5	-14	702.5	
		14	702.5	1.4	703.6	1.7	703,6	
		14 17 100	701.2	25	701.9	50	707.6	
		100	711.0		्र [्] रिक्ष	•		

-80/80 LIST OF INPUT DATA--

ENDTABLE
SEGMENT WSAWUS 1 N =17
NVALUE .045
SEGMENT WSAWUS 2 C 17

...

£1.

				O LIST OF	INPUT DA	ATA=======		
NVALUE	.014	The test of the te					The second secon	
SEGMENT	WSAWUS	3	. N	100				
NVALUE	.05							
SECTION	WSAWUS							
		-5 0	710.0	-25	704.4	24	703.6	
141 + 1 1 + 44 + 144 + 14 + 144 + 1 + 1		-20	702.2	-18	700.8	m 1 7	700.8	
		-17	703.5	-14	703.5	-14	702.5	
		14	702.5	14	703.6	17	703.6	
		17	701.2	25	701.9	50	707.6	
		100	711.0		, 4 % # ,	***	, w	
ENDTABLE		I # A	/ 4 * * *					
SEGMENT	SVWARM	4	N:					
NVALUE	.045	. 10		· · · · · · · · · · · · · · · · · · ·				
SEGMENT	WSAWV2	2	C	25				
NVALUE	.045		• •					
SEGMENT	WSAWVZ	3	N	100				
NVALUE	.05							
SECTION	SVWARW			1				
		-5 0	710.5	~2 5	704.9	-24	704.1	
		-20	702.5	-18	701.9	-15	702.1	•
		-11	701.3	8	701.2	#2	701.1	
		Ō	700.8	1	701.1		701.2	
		4	701.0	5	701.2	1 1	701.1	
	-	25	701.4	50	708.1	100	711.5	
ENDTABLE		- Mark Way				# 36 ±	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
SEGMENT	MSASZA	1	N	-15				
		#	: 1 %					
NVALUE	.040	12n	A	· ** #				
SEGMENT	WSASZA	2	C	25				
NVALUE	.035	. 118						
SEGMENT	MSASZA	3		100				
NVALUE	.040							
SECTION	MSASZA							
		-5 0	711.5	-25	705.9	-15	703.1	
		-11	702.3	· • 8	702.2	-2	702.1	
and the second section of the s		0	701.8	1.1	702.1	3	702.2	
		4	702.0	5	702.2	11	702.1	
		25	702.4	50	709.1	100	712.5	
ENDTABLE		. no see	E MAN THE MEN TO SERVICE STATES	- 7AV	· · · · · · · · · · · · · · · · · · ·	427 - 771 - 1	4 m 1 m 1	
CULV1	WSAS3R	1	2255	>				
culva	3.5		239		6 70	1.50		
			#6 */ ? ∰		1.4	5 mm # #		
SECTION	WSAS3R	- 300	7 6 2 2	_ E ^	710 0	0	710.3	
MINISTER OF THE STATE OF THE ST		-100	713.3	₹ 50	710.9	, v	1 7 A & 3	
mm c 1 At 1000 1 4 600 1 1000		50	711.9	1.00	712.6			
ENDTABLE			£. i	4				
SEGMENT	WSAS3C	1	N	=10				

				LIST OF	INPUT DAT	TA		
NVALUE	· • • • • • • • • • • • • • • • • • • •	*** *** *** *** *** *** ***	. 	AUI OF	FIAI OI DAI	रूप स्टाइट स्टाइन स्टाइट स्टाइट स्टाइट -		
	.04	. 6	· ·	. 6				
SEGMENT	WSAS3C	5	C	10				
NVALUE	.045				*			
SEGMENT	WSAS3C	3	: N	50				
NVALUE	.04							
SECTION	WSAS3C							
		-5 0	714.3	=25	711.7	-1 0	709.8	
		- 2	707.6	• 1	707.2	0	706.6	
		2	707.1	3	708.0	10	709.6	
		25	712.7	50	714.6	6 ***		
ENDTABLE		enter Male	ह क्षु ल≅ का ग	wife bolt	1 12 mil 18 mil			
SEGMENT	WSAV1	1	N.	-15	· ·			
				<i>□</i>	,			
NVALUE	.04	***	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
SEGMENT	WSAV1	2	C	15				
NVALUE	.045	201						•
SEGMENT	WSAV1	3	N	100				
NVALUE	.040							
SECTION	WSAV1							
		= 100	718.7	-50	718.5	-25	717.0	
		-15	713.9	-10	713.5	- 1	713.4	
		0	712.8	5	713.1	15	713.6	
		25	713.6	35	715.9	50	718.6	
		75	721.1	100	722.0	, She an	a mange mange mange	
MAINTABLE		7.3	/	100	, , , , , , , , , , , , , , , , , , , 			
ENDTABLE	LAAAMM		; 17% 17% \$40 plot 1/4					
CULYI	WSAS5R	1	22552		_ 404	2/ mg		
CATAS	4.3		62.0	717	'•5 715) • Z		
SECTION	WSASSR		· · · · · · · · · · · · · · · · · · ·					
	* 4	-150	728.6	=100	727.7	- 5 0 ⋅	726.8	
		0	725.7	-50	725.8	100	726.3	
		150	726.7				7 27 3	
ENDTABLE		-						
SEGMENT	WSAS5C	. 1	N	- 1 0				
NVALUE	.050	**	k 18	use don un				
SEGMENT	WSAS5C	2	C	Ş				•
NVALUE	.045	· 	· •	Cip				
		19						* * * * * * * * * * * * * * * * * * * *
SEGMENT	WSASSC	3		35				
NVALUE	.040							
SECTION	WSASSC	\$400						
	* * * * * * * * * * * * * * * * * * *	-112	728.0	-111	728.0	-110	728.0	
		-50	726.3	#40	723.9	-25	720.3	
		-10	718.9	#3	718.6	= 2	717.8	
		. 0	717.5	1	717.6	2	718.5	
		8	721.0	25	724.5	35	726.7	
ENDTABLE		245	à Marie	man dat		ion No.	· Jana	
CULV1	WSAS6R	. 1	22552					
~ W (m ? *	WANA AU		ton ton 11 mil mil				*	

	CULVS	3.5			O LIST OF		TA		
	SECTION	WSAS6R		**************************************	/ W G +	g 7 g fun	for # !		
	end a		-150	729.5	*100	730.7	-50	729.2	Y
			0	727.1	50	727.8	100	729.0	
			150	730.2		, m, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	* * *	Company of the second	
	ENDTABLE		7	1 w/ 2 x mi		·			
	SEGMENT	WSAS6V	1.	N	37				
	NVALUE	.05	*	**	31				
	SEGMENT	WSAS6V	2	(C)	49				
	NVALUE	.045	4		4 4				
			3	:.N	4.0.0				
	SEGMENT	WSAS6V	c _l ,	- IX .	100	•			
	NVALUE	.04							
	SECTION	WSAS6V			,	578 . 375 . may	ne d	and the Artist	
			0	729.0	24	727.6	31	726.6	
			37	725.0	40	724.2	42	723.9	
			45	723.9	49	724.1	56	724.6	
	Control of the second second		75	726.3	100	727.3	240	729.0	
	ENDTABLE								
	CULV1	WSAS6A	1	22558					
	CALAS	3.5		58	724.	.2 72	3.9		
	SECTION	WSAS6A					-1. 29		
			-50	730.0	0	728.6	50	730.0	
	ENDTABLE							***	
	SEGMENT	WSAS6B	1	N	37				
	NVALUE	.05	,						
	SEGMENT	WSAS6B	2	C	56				
	NVALUE	.045	***						•
	SEGMENT	WSAS6B	3	i N	100				
	NVALUE	.040	mpr.	`*	***				
	SECTION	WSAS6B							
	and the first of the second	. HAWAAR	0	730.8	24	729.4	31	728.4	
			37	726.8	40	726.0	42	725.7	
			45	725.7	49	725.9	56	726.4	
			75	728.1					
	MAINTADIE		(3	190 * 1	100	729.1	150	731.0	
	ENDTABLE	LIBADAD		· · · · · · · · · · · · · · · · · · ·	,				
	CULVI	WSAS6C	1	22558					
	CULAS	3.0		. 66	726.	4 72	6.3		
	SECTION	WSAS6C	Very			52 MA		and the second	
		a 🖷	150	732.0	-149	732.0	-148	732.0	
	ستو مدد د بوس		0	730.8	50	732.0	70	734.0	
	ENDTABLE								
10 F - 20 W	SEGMENT	WSAS6D	1		- 5				
	NVALUE	.05							
	SEGMENT	WSAS6D	2	C	7				
	NVALUE	.045							

		中山东东西	80/8	O LIST OF	INPUT D	ATA		
SEGMENT	WSAS6D	3	N	58		20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TO A TO THE	
NVALUE	.04							
SECTION	WSAS6D	4.						
	**	+150	732.0	-42	730.6	-18	730.5	
		-11	729.8	~ 5	728.2		727.3	
		0	727.1	3	727.1	7	727.3	
nega ja		14	727.8	33	729.5	58	732.0	
ENDTABLE								
CULV1	WSAS6E	1	2253				P	
cnrvs	2.5		116	728.	5 76	27.8		
SECTION	WSAS6E							
		-500	736.0	= 140	734.0	0	732.0	
		90	734.0	180	735.0			
ENDTABLE	1 . 4							
SEGMENT	WSAS6F	1	N.	37				
NVALUE	.05							
SEGMENT	WSAS6F	2	C	56				
NVALUE	.045							
SEGMENT	WSAS6F	3	N.	142			•	
NVALUE	.04	•						
SECTION	WSAS6F	,						
	у у	-105	734.0	-101	734.0	m 1 0 0	734.0	
		0	732.4	24	732.1	31	731.4	
		37	729.8	40	728.9	42	728.7	
· ·		45	728.7	49	728.9	56	729.4	
		75	731.1	100	731.8	142	732.0	
		170	735.0				70	
ENDTABLE		*						
SEGMENT	WSAVZ	1	N	-10				
NVALUE	.05							
SEGMENT	WSAVZ	2		10				
NVALUE	.045							
SEGMENT	WSAVZ	3	N.	200				
NVALUE	.040							
SECTION	WSAV2							
		-272	736.0	-271	736.0	~27 0	736.0	
		-250	734.3	-200	734.2	-150	734.3	
		-100	734.0	#40	733.8	m 30	737.6	
		-25	737.4	#20	736.2	=10	732.5	
		=3	729.9	-2	729.5	Q	729.1	
		2	729.5	3	730.4	10	733.0	
		25	733.8	50	735.0	150	735.9	
name garan iliya sasa		200	737.7				e a ·	
ENDTABLE								
SEGMENT	WSAV3	1	N	-12	1 1			
	7,				1 1	LOMR 96-05-	2794	
						LOMR 96-05- (11/26	(1994)	
					· • • •	Supersedes	Y .	
					1		I I	

NVALUE SEGMENT	.06 WSAV3	2	C	11		•	e de la companya de l				
NVALUE	.045										
SEGMENT NVALUE SECTION	WSAV3		. N :	·500 ·					.		
		⇒ 500	739.9	400	743.9	-300	741.8		23 JW 79	RUN SUAFRSEDE	\$
		-500	738.2	-100	738.2	-5 0	737.3			1	
		-25	736.9	· 17	736,2	-12	735.7			V	
		-10	734.6	- * 8	732.4	5	732.3	9			/\
		≠ ≈ 3	732.0	0	731.7	4	731.9		LOMR 96	-05-2794 (11/2 TUPERSEDES!	6/1997)
		6.	732.4	11	735.3	18	738.6			Westerner!	
		25	739.6	50	739.7	100	739.1	n ingger			(nelson
MAINTADIE		200	740.7	400	751.8	500	755.3	L		-ws/csws	1/25/2012
ENDTABLE SEGMENT	WSAV4	4	: N -	98					[
NVALUE	0.06	*	: 174						1		
SEGMENT	WSAV4		C	103							
NVALUE	0.045	· · · · · · · · · · · · · · · · · · ·	7.								
SEGMENT	WSAV4	3	N	300					1		
NVALUE	0.055		,,								
SECTION	WSAV4										
		-100	760.2	= 50	759.5	0	758.7				*
***************************************		50	757.4	75	757.6	98	758.0				
		98	758.0	99	757.0	100	756.7				
		105	757.1	103	758.2	125	757.8				
		150	758.1	200	756.6	250	758.9				
		300	760.6						V		
ENDTABLE											

MANAGEMENT STARTING DATA FROM GIVEN ELEVATION

WSP2 XEQ 24 J 77 REV 03/11/74

PAGE BI

DARI	EN F	LOOD	INSURA	NCE	STUDY
SAWM	ILL	CREEK	WESTE	RN T	RIB

RAT	ING TAB	LE FOR SECT ELEV	ION SMD03 AREA	CFS		ACRES FLOOD	ED	CSM	CRIT ELEV	FRICTION SLOPE
	0	665.6	0 • 0	0 . 0		A STATE OF THE STA				ye i ka wa
ZERO I	DAMG	668.5	41.1	330.0	• 0 0	• 00	. 00			
BANK	FULL	668.7	63.5	352,8	- • 0 0	• 0 0	•00			
	1	669.8	397.8	478.0	- 00	.00	.00	10.00	669.0	.00285
	2	670.2	612.3	780.0	** • 0 0	.00	.00	50.00	669.2	.00323
	3	670.3	665.9	923.0	-, 00	.00	.00	100.00	669.3	.00370
		670.7	934.3	1290.0	- 00	.00	.00	500.00	669,5	.00313

	SEGMENT TABLE FOR SECT	ION SMD03		00° n - 110		
	CSM	TOTAL	1 D	SEG NO 2 C	3	
	1 DISCHARGE CFS 93. VELOCITY FPS DISCHARGE CFS 152. VELOCITY FPS 3 DISCHARGE CFS 180. VELOCITY FPS 4 DISCHARGE CFS 252. VELOCITY FPS	478. 1.86 780. 2.01 923. 2.16 1290. 2.04	60. .75 138. 1.05 171. 1.18 251. 1.24	202. 2.68 264. 3.05 301. 3.37 322. 3.21	216. .89 378. .96 452. 1.05 717. 1.13	
ELE	1 ELEV 669.8 KD 2 ELEV 670.2 KD 3 ELEV 670.3 KD 4 ELEV 670.7 KD EVB= 692.37 EWSBD= EVB= 695.23 EWSBD= EVB= 697.07 EWSBD=	688.11 HD	1114. 2290. 2715. 4461. LOSS= 4.64 LOSS= 7.12 LOSS= 8.88	3782. 4753. 5017. 6100.	4051. 6586. 7388. 12308.	

DARIEN FLOOD INSURANCE STUDY SAWMILL CREEK WESTERN TRIB

4983.

20296.

692.4 KD

695.2 KD

1 ELEV

695.

6093.

2639.

7349.

1649.

6854.

		OWNINTE	r avecy ura	TEKN INTO								
				ROA	D SECTIO	IN WSASIR					[:-22.5]	
		NO.	HW	CFS	ML	Ĭ.M.:	CSM					
		0 1 2 3 4	687.10 692.37 695.23 697.07 701.50	0.00 178.00 290.00 345.00 495.00	0.00 4.64 7.12 8.88 13.12	0.00 687.73 688.11 688.19 688.38	0.00 10.00 50.00 100.00					
· · · · · · · · · · · · · · · · · · ·	PENING NO.		CULV. H	D ELEVATIO Eight Diam	WIDTH	701.10 LENGTH	U/S	D/S INVERT	(N)			
	• • • • • • • • • • • • • • • • • • •		41111.	5.30	5.00	231.00	687.10	684.40	.012			
WSP2 XEQ 24 J REV 03/1			FLOOD INSU L CREEK WES		Y						AGE 10B	
RATING TABLE	FOR SECTION OF THE SE	TION WSAS1C AREA 0.0	CFS 0.0	Am .7		FLOODED	N-DAM	CSM		CRIT	FRICTION SLOPE	
BANK FULL 1 2 3	689.3 692.4 695.2 697.1	3.0 90.0 298.2 529.7 1374.2	24.7 178.0 290.0 345.0 494.9	.00 .00 .00		.00 .00 .00	.00 .00 .00	10.00 50.00 100.00	:	690.7 691.2 691.4	.00128 .00020 .00007	
	701.5	1374.8	495.0	***PROFILE		.00 EXCEEDS SUP	.00	500.00 *****	****	691.8 ******	.00001	
SEGMENT TABLE	FOR SE	CTION WSAS1	C									
CSM.	*	TOTAL	1 		G NO	3 N						
1 DISCHARGE 237. VELOCITY 2 DISCHARGE 387. VELOCITY 3 DISCHARGE 460. VELOCITY 4 DISCHARGE 660. VELOCITY	FRS FRS FRS PRS FRS E CFS	178. 2.17 290. 1.13 345. .73 495.	1 * 8 1 2 2 0	7. 80 8.	94. 2.57 105. 1.55 92. 1.04 82.	59. 1.67 98. .80 125. .55 207.			海 柳 柳 徳 神 彦 が *********************************			

```
42304.
                                           15632.
                                                          11337.
                                                                        15335.
   3 ELEV
             697.1 KD
             701.5 KD
                                                                        59529.
   4 ELEV
                             142488.
                                            59298.
                                                          23661.
                             695.76 HDLOSS=
                                                   4,96
ELEVB=
          700.72 EWSBD=
                                                   7.92
                             696.65
                                     HDL088=
ELEAB=
          704.57
                   EWSBD=
                             697.45
                                     HDL055=
                                                   9.84
          707.29
                   EWSBD=
ELEV8=
                                                   6.96
                             701.51 HDLOSS=
ELEV8=
          708.47
                  EWSBD=
   WSP2 XEQ 24 J 77
                                                                                                                   PAGE 118
         REV 03/11/74
                              DARIEN PLOOD INSURANCE STUDY
                              SAWMILL CREEK WESTERN TRIB
                                                        ROAD SECTION WSASZR
                                                                                  CSM
                                                                        TW
                                NO.
                                                  CFS
                                                             HL
                                                                                   0.00
                                                              0.00
                                                                         0.00
                                       695.40
                                                   0.00
                                                              4,96
                                                                       695.76
                                                                                  10.00
                                       700.72
                                                 178.00
                                                                       696.65
                                       704.57
                                                 290.00
                                                              7.92
                                                                                  50,00
                                       707.29
                                                 345.00
                                                              9.84
                                                                       697.45
                                                                                 100.00
                                                                       701.51
                                                                                 500.00
                                       708.47
                                                 495.00
                                                              6.96
                                         MIN ROAD ELEVATION
                                                                        707.90
                                                                                 U/S
                                                                                            0/8
                                                                                                      (N)
                 OPENING
                             NO.
                                     CULV.
                                               HEIGHT
                                                           HTGIW
                                                                     LENGTH
                                                                               INVERT
                                                                                          INVERT
                                                                                                      COEFF
                          CULVERTS
                                     CODE
                                              OR DIAM
                                                                      89.70
                                                                               695.40
                                                                                          693.80
                                                                                                       .012
                                     41111.
                                                            5.30
                                                 4.20
   WSP2 XEQ 24 J 77
                                                                                                                   PAGE
                                                                                                                        128
         REV 03/11/74
                              DARIEN FLOOD INSURANCE STUDY
                              SAWMILL CREEK WESTERN TRIB
                              WSASSC
                                               DA
                                                       . 7
   RATING TABLE FOR SECTION
                              AREA
                                                              ACRES FLOODED
                                                                                             CSM
                                                                                                              CRIT
                                                                                                                     FRICTION
                                         CFS
       NO.
                  ELEV
                                                                                                                      SLOPE
                                                                                                              ELEV
                                                     DAMAGE
                                                                CHANNEL
                                                                             NON-DAM
                  696.2
                               0.0
                                          0 .0
                              24.6
                                                                                 .00
 BANK FULL
                  699.3
                                         118.9
                                                        .00
                                                                     .00
                                         178.0
                                                                                                            699.4
                              80.0
                                                        .00
                                                                     .00
                                                                                 .00
                                                                                            10.00
                                                                                                                      .00550
                  700.8
                                                                                                                      .00012
                                                                                            50.00
                             334.6
                                         290.0
                                                        .00
                                                                     .00
                                                                                 .00
                                                                                                            700.0
                  704.6
                             620.9
                                                                                                            700.2
                                                                                                                      .00003
                                                                    .00
                                                                                 .00
                                                                                           100.00
                 707.3
                                         345.0
                                                        .00
                             777.2
                                         495.0
                                                        .00
                                                                     .00
                                                                                 .00
                                                                                           500.00
                                                                                                            700.6
                                                                                                                      .00004
                  708.5
   SEGMENT TABLE FOR SECTION WSAS2C
```

SEG NO

C

TOTAL

CSM

1 DI	SCHARGE CFS	178.	33.	137.	38.					
	LOCITY FRS	2.44	.93	2.62	1.56					
	SCHARGE CFS	290.	50.	142.	98.				en e	
	LOCITY FPS Scharge CFS	.94 345.	80.	1.12	.73 128.					
	LOCITY FRS	.60	.45	.75	49					
4 DI	SCHARGE CFS	495.	127.	180.	188.					
660. VE	LOCITY FPS	.69	.53	.88	.57					
1 ELEV	700.8 KD	3771.	50.	2939.	783,					
2 ELEV	704.6 KD	26241.	4513.	12913.	8816.				the state of the s	
3 ELEV	707.3 KD	59033.	13625.	23447.	21962.					
4 ELEV	708.5 KD	78886.	20153.	28741.	29991.					
				•		•				
**************************************										The second commence of the second
	e e e e e e e e e e e e e e e e e e e									
WSP2 XEQ	24 J 77		•							
	V 03/11/74								AGE 138	
			LOOD INSURAN						A more an army more institute of a continuous	
		SAMMILL.	CREEK WESTER		v.					
		CTION WSAWV1	DA=	. 7			,			
NO	. ELEV	AREA	CFS		S FLOODED		CSM	CRIT	FRICTION	
	700.3	0.0	0.0	DAMAGE CF	IANNEL NO	N-DAM		ELEV	SLOPE	
BANK FULL		8.0	62.4	.00	.00	.00				
	702.0	55.8	178.0	• 00	.00	.00	10.00	701.6	.00740	
· · · · · · · · · · · · · · · · · · ·	704.6	204.5	290.0	• 0 0	.00	• 0 0	50.00	701.9	.00037	
	707.3	408.4	345.0	• 0 0	*00	.00	100.00	702.0 702.4	.00008 .00008	
	708.5	521.5	495.0		.00		700•VV	/ V G . 4	• 4444	
BEGMENT	TABLE FOR S	ECTION WSAWV1		M. Phi was a significant						
CSM		TOTAL	1	SEGINO	. *					
		The temperature		Č						
	SCHARGE CFS LOCITY FPS	178.	1.69	170. 3.32	4.					
	SCHARGE CFS	290.	24.	244.	1.71	•				
	LOCITY FRS	1.49	1.01	1.57	.85					
	SCHARGE CFS	345.	40.	263.	42.					
	LOCITY FPS	.92	2 ⁵ 8	1.00	.55				en e	
	SCHARGE CFS Locity FPS	495. 1.06	67. •68	366.	62.					
WWW # 7 5	क्रमा कर कर तर है है है जिलें	* # W W	***	₩ ₩ ₩	े क्र ाली <i>पी</i>					
1 ELEV	702.0 KD	2067.	38.	1984.	45.					
S ELEV	704.6 KD	14987.	1213.	12644.	1130.					
3 ELEV 4 ELEV	707.3 KD	39763. 54052.	4582.	30361. 39967.	4820. 6751.					
	1 A M # 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>सरवार भ ओ कि है</i> ।	र क्षा का का	in a special	· · · · · · · · · · · · · · · · · · ·				•	e e e e

0	AR	1		N	F	L	0	0	D		I	N	S	Ų	R	A	N	C	Ē,	: :	Ş	1	Uĺ) Y	
 8	AW	M	Ţ	L	ļ.,	C	R		E	K		W	E	S	1	1	R	N		ľ	R	1	8		

RAT	TING	TABL	E FOR SECT	ION WSAWDS	DA	. 7						
	NO		ELEV	AREA	CFS	DAMAGE	ACRES FLOODE CHANNEL	D-m-	CSM		CRIT	FRICTION
era esta mara a como esta esta esta esta esta esta esta esta	0		700.8	0.0	0.0		est en					
BANK	FULL	; .	700.8	* • 0	.0	• 0 0	.00	.00				
	1		703.0	35.2	178.0	.00	.00	.00	10.00	C	703.0	.03866
	2		704.6	120.5	290.0	.00	.00	.00	50.00		703.3	.00281
	3		707.3	0.55	345.0	.00	.00	.00	100.00		703.5	.00022
	4		708.5	434.8	495.0	.00	.00	.00	500.00		703.8	05000.
								ing series and the series of t	en e			\$ \ * ·

SEGMENT TABLE FOR SECTION WSAWDS

1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994				SEG NO			
CSM		TOTAL	1 N	2	3 · N		
				*****	****		
1	DISCHARGE CFS	178.	40.	57.	80.		
237.		5.57	6.44	3.98	5.52		
2		290.	43.	156.	91.		
387.		2.43	2.57	2.44	2.29		
3	The state of the s	345.	49.	193.	103.		
460.		1.11	.89	1.23	. 93		
4		495.	80.	273.	141.		
660.		1.21	97	1.39	. 91		
			· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * * *	, Sept. 2.01		
1 EL	FV 703.0 KD	887.	212.	255.	420.		
an or other	· · · · · · · · · · · · · · · · · · ·		821	2921.	1726.		
		25 au .	3336.	13123.	6983.		
4 EL	Ann 2	34720.	and the same of th	19175.	9927.		
	237. 237. 387. 3460. 4660. 1 EL	CSM 1 DISCHARGE CFS 237. VELOCITY FPS 2 DISCHARGE CFS 387. VELOCITY FPS 3 DISCHARGE CFS 460. VELOCITY FPS 4 DISCHARGE CFS 660. VELOCITY FPS 1 ELEV 703.0 KD 2 ELEV 704.6 KD 3 ELEV 707.3 KD 4 ELEV 708.5 KD	1 DISCHARGE CFS 178. 237. VELOCITY FPS 5.57 2 DISCHARGE CFS 290. 387. VELOCITY FPS 2.43 3 DISCHARGE CFS 345. 460. VELOCITY FPS 1.11 4 DISCHARGE CFS 495. 660. VELOCITY FPS 1.21 1 ELEV 703.0 KD 887. 2 ELEV 704.6 KD 5469. 3 ELEV 707.3 KD 23442.	1 DISCHARGE CFS 178. 40. 237. VELOCITY FPS 5.57 6.44 2 DISCHARGE CFS 290. 43. 387. VELOCITY FRS 2.43 2.57 3 DISCHARGE CFS 345. 49. 460. VELOCITY FPS 1.11 .89 4 DISCHARGE CFS 495. 80. 660. VELOCITY FPS 1.21 .97 1 ELEV 703.0 KD 887. 212. 2 ELEV 704.6 KD 5469. 821. 3 ELEV 707.3 KD 23442. 3336.	1 DISCHARGE CFS 178. 40. 57. 237. VELOCITY FPS 5.57 6.44 3.98 2 DISCHARGE CFS 290. 43. 156. 387. VELOCITY FPS 2.43 2.57 2.44 3 DISCHARGE CFS 345. 49. 193. 460. VELOCITY FPS 1.11 .89 1.23 4 DISCHARGE CFS 495. 80. 273. 660. VELOCITY FPS 1.21 .97 1.39 1 ELEV 703.0 KD 887. 212. 255. 2 ELEV 704.6 KD 5469. 821. 2921. 3 ELEV 707.3 KD 23442. 3336. 13123.	N C N 1 DISCHARGE CFS 178. 40. 57. 80. 237. VELOCITY FPS 5.57 6.44 3.98 5.52 2 DISCHARGE CFS 290. 43. 156. 91. 387. VELOCITY FPS 2.43 2.57 2.44 2.29 3 DISCHARGE CFS 345. 49. 193. 103. 460. VELOCITY FPS 1.11 .89 1.23 .93 4 DISCHARGE CFS 495. 80. 273. 141. 660. VELOCITY FPS 1.21 .97 1.39 .91 1 ELEV 703.0 KD 887. 212. 255. 420. 2 ELEV 704.6 KD 5469. 821. 2921. 1726. 3 ELEV 707.3 KD 23442. 3336. 13123. 6983.	N C N 1 DISCHARGE CFS 178. 40. 57. 80. 237. VELOCITY FPS 5.57 6.44 3.98 5.52 2 DISCHARGE CFS 290. 43. 156. 91. 387. VELOCITY FPS 2.43 2.57 2.44 2.29 3 DISCHARGE CFS 345. 49. 193. 103. 460. VELOCITY FPS 1.11 .89 1.23 .93 4 DISCHARGE CFS 495. 80. 273. 141. 660. VELOCITY FPS 1.21 .97 1.39 .91 1 ELEV 703.0 KD 887. 212. 255. 420. 2 ELEV 704.6 KD 5469. 821. 2921. 1726. 3 ELEV 707.3 KD 23442. 3336. 13123. 6983.

WSP2 XEQ 24 J 77 REV 03/11/74

PAGE 158

DARIEN FLOOD INSURANCE STUDY SAWMILL CREEK WESTERN TRIB

8	ATING TABLE	FOR SECTION ELEV	MSAWUS	CFS	.7 DAMAGE	ACRES FLOODED.	NON-DAM	CSM		CRIT	FRICTION SLOPE
3 BAN	K FULL	700.8	0.0	0.0	.00	.00	.00				74
	2 3	703.0 704.5	35.2 116.7 322.7 434.9	178.0 290.0 345.0 495.0	• 0 0 • 0 0 • 0 0	.00	.00	10.00 50.00 100.00 500.00	C	703.0 703.3 703.5 703.8	.01431 .00066 .00004

CSM	TOTAL	1 N	SEG NO	3 N			
1 DISCHARGE CFS 237. VELOCITY FPS 2 DISCHARGE CFS 387. VELOCITY FPS 3 DISCHARGE CFS 460. VELOCITY FPS 4 DISCHARGE CFS 660. VELOCITY FPS	178. 6.46 290. 3.33 345. 1.59 495. 1.81	23. 3.76 21. 1.23 24. .41 38.	108. 7.46 227. 3.70 276. 1.77 393. 2.01	47. 3.22 42. 1.09 46. .42 63.			
1 ELEV 703.0 KD 2 ELEV 704.5 KD 3 ELEV 707.3 KD 4 ELEV 708.4 KD	1452. 11285. 52385. 76926.	212. 805. 3566.	820. 8836. 41880. 61147.	420. 1644. 6939. 9850.			
WSP2 XEQ 24 J 77 REV 03/11/74	DARIEN FLOOD SAWMILL CREE						PAGE 168
RATING TABLE FOR SEC	TION WSAWVZ AREA CF		177	S FLOODED	CSM	CRIT	FRICTION
BANK FULL 701.4 1 703.6 2 704.6 3 707.3 4 708.5	8.0 3 114.4 17 173.2 29	0.0 7.9 8.0 0.0 5.0	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 10.00 .00 50.00 .00 100.00	702.1 702.4 702.5	.00081 .00061 .00010 .00011
SEGMENT TABLE FOR SE	CTION WSAWV2		6 Page 1173				
CSM	TOTAL	1 N	SEG NO	(3)			
DISCHARGE CFS 237. VELOCITY FPS DISCHARGE CFS 387. VELOCITY FPS DISCHARGE CFS 460. VELOCITY FPS DISCHARGE CFS 460. VELOCITY FPS	178. 1.62 290. 1.76 345. 1.02 495. 1.16	10. 1.04 22. 1.19 37. .64 63.	160. 1.67 249. 1.84 269. 1.11 371. 1.28	8. .89 19. .99 39. .60 61.		· · · · · · · · · · · · · · · · · · ·	
1 ELEV 703.6 KD 2 ELEV 704.6 KD 3 ELEV 707.3 KD	6239. 11700. 34134.	332. 867. 3666.	5622. 10063. 26591.	285. 770. 3876.			
4 ELEV 708.5 KD	47663.	6049.	35737.	5876.			IIADZA

	REV 03/	11/74		LOOD INSURA Creek Weste						PAGE 17B
RAI	TING TABLE	FOR SECT	ION WSASZA AREA	CFS	• 7	-ACRES FLOODE	Mr. viv. i i i	CSM	CRIT	FRICTION
	0	701.8	0.0	0.0	DAMAGE	CHANNEL	NON-DAM		ELEV	SLOPE
> BANK	1	702.4 703.7 704.6	8.0 61.9 108.9	56.8 178.0 290.0	.00	.00	.00	10.00	703.1	.00303
	3	707.3 708.5	279.7 373.3	345.0 495.0	.00	.00	.00	100.00	703.5	\$1000. \$1000.
SE	MENT TABL	•	TION WSASZA		SEG	NO.				
CSI			TOTAL	1 1	Č	3 N				

	1		DISCHAR	GE CFS	*	178.		1.	173	ining parameter (5.						
	2	37.	VELOCIT	Y FPS		2.96		. 95	2.9	7	1.50						
	2		DISCHAR	GE CFS		290.		5.	271		14.						
	3	87.	VELOCIT	Y FPS		2.79		1.17	2.8	4	1.48						
	3		DISCHAR	GE CFS		345.		21.	290		34.						
	4	60.	VELOCIT	YFPS		1.34		. 66	1.4	3	.76						
	4		DISCHAR	7		495.		41.	396	· ·	58.						
	6		VELOCIT			1.47		.75	1,5		.84						
		ELE	V 703	.7 KD		3230.		8.	3140		82.						
	2	ELE		70 7		7666.		120.	7192	". ★	354.						
	3	ELE		w		30068.		1853.	25273	. 2	942.						
	4	ELE		A. 68.		44714.		3679.	35807	, 5	228.						
Æ	LEVB		705.04	EWSBI) = 7	04.04	HDLOSS=		1.60		*						
1 .			ADWATER		CRITIC	AL DEP	TH ON AP	PROACH	SECTION. H	PRESUMED	AT CR	ITICAL	****	******	******	*****	f .
	LEVB	#	711.40	EWSB) = 7	04.84	HDL055=		6,56			en e			7 m 1 m 1		
	LEVB		711.55	EWSBI		07.31	HDL088=		4.24								
	LEVB		711.84			08.48	HDLOSS=		3,36								
	The state of the s																

WSP2 XEQ 24 J 77 REV 03/11/74

WSP2 XEQ 24 J 77

DARIEN FLOOD INSURANCE STUDY SAWMILL CREEK WESTERN TRIB

PAGE 188

ROAD SECTION WSAS3R

CSM NO. CFS

ENGINEERING COMPANY

	0 705.6 1 708.6 2 711.4 3 711.5 4 711.8	3 178.00 290.00 345.00	0.00 0.00 4.64 704.04 6.56 704.84 4.24 707.31 3.36 708.48	0.00 10.00 50.00 100.00 500.00					
OPENING NO.	NO. CULV. CULVERTS CODE	ROAD ELEVATION HEIGHT WI	710.30 LENGTH	U/S INVÉRT	D/S INVERT	(N) COEFF			
	1 22552.		239.50	705.60	702,10	• 012			
WSP2 XEQ 24 J 77 REV 03/11/74	DARIEN FLOOD SAWMILL CREEK	INSURANCE STUDY WESTERN TRIB						AGE 19B	
RATING TABLE FOR SECT	AREA CFS	DA= .7 DAMAGE	ACRES FLOODED CHANNEL N	ON-DAM	CSM		CRIT ELEV	FRICTION SLOPE	
BANK FULL 709.6 709.7 709.7 711.3 711.5 4 711.7	0.0 25.3 27.0 178 77.2 290 83.2 345 94.3	.0 .0 .0	.00 .00 .00	.00 .00 .00	10.00 50.00 100.00 500.00		709.7 710.3 710.5 711.0	.02834 .00410 .00480 .00729	
SEGMENT TABLE FOR SEC	TION WSAS3C								
CSM	TOTAL	SEG I	NO						
1 DISCHARGE CFS 237. VELOCITY FPS 2 DISCHARGE CFS 387. VELOCITY FPS 3 DISCHARGE CFS 460. VELOCITY FPS	178. 6.66 290. 4.05 345. 4.49	2.01 4 2.01 4 27. 2:	78. 0. .63 .00 .55. 16. .24 2.15 .27. 22.		· · · · · · · · · · · · · · · · · · ·		然 類 極 職 部 談 朝 尊		
DISCHARGE CFS 660. VELOCITY FRS 1 ELEV 709.7 KD	495. 5.76	3.12	37. 3.05 3.32						
1 ELEV 709.7 KD 2 ELEV 711.3 KD 3 ELEV 711.5 KD 4 ELEV 711.7 KD	4521. 4967. 5756.	289. 398 364. 438	1. 088. 244. 300. 445. 405.		· · · · · · · · · · · · · · · · · · ·				

DARIEN FLOOD INSURANCE STUDY SAWMILL CREEK WESTERN TRIB

RATING TABLE	FOR SECTION	WSAV1	CFS DA=		ES FLOODE	NON-DAM	CSM	CRIT	FRICTION SLOPE
BANK FULL	712.8 713.6 714.4 715.0 715.1 715.5	0.0 7.7 41.1 67.5 73.5 95.6	0.0 74.3 149.0 245.0 290.0 420.0	.00 .00 .00 .00	.00	.00 .00 .00	10.00 50.00 100.00 500.00	714.2 714.5 714.6 714.9	.01248 .00722 .00777 .00733
SEGMENT TABL	E FOR SECTIO	IN WSAV1							
CSM	**************************************	TOTAL	1 N	SEG NO 2 C	3 N				AMBIT AT STATE OF THE STATE OF
1 DISCHAR 257. VELOCIT 2 DISCHAR 422. VELOCIT 3 DISCHAR 500. VELOCIT 4 DISCHAR 724. VELOCIT	Y FRS GE CFS Y FRS GE CFS Y FRS GE CFS:	149. 3.67. 245. 3.70. 290. 4.02. 4.50	2.06 2.06 5. 2.27 12. 2.72	118. 3.79 182. 3.80 213. 4.14 298. 4.64	3	31 * 27	· · · · · · · · · · · · · · · · · · ·	· 微···································	表 教 教 教 教 教 意 意 意 意
1 ELEV 714 2 ELEV 715 3 ELEV 715 4 ELEV 715 ELEVB= 723.58 ELEVB= 726.09 ELEVB= 726.24 ELEVB= 726.50	.0 KD .1 KD .5 KD EWSBD= EWSBD= EWSBD=	1334. 2880. 3287. 4899. 716.86 717.13 717.36 717.70	HDLOSS= HDLOSS= HDLOSS= HDLOSS=	1053. 2145. 2423. 3494. 6.72 8.96 8.86 8.86	69	75 • 93 • 98 • 78 •			

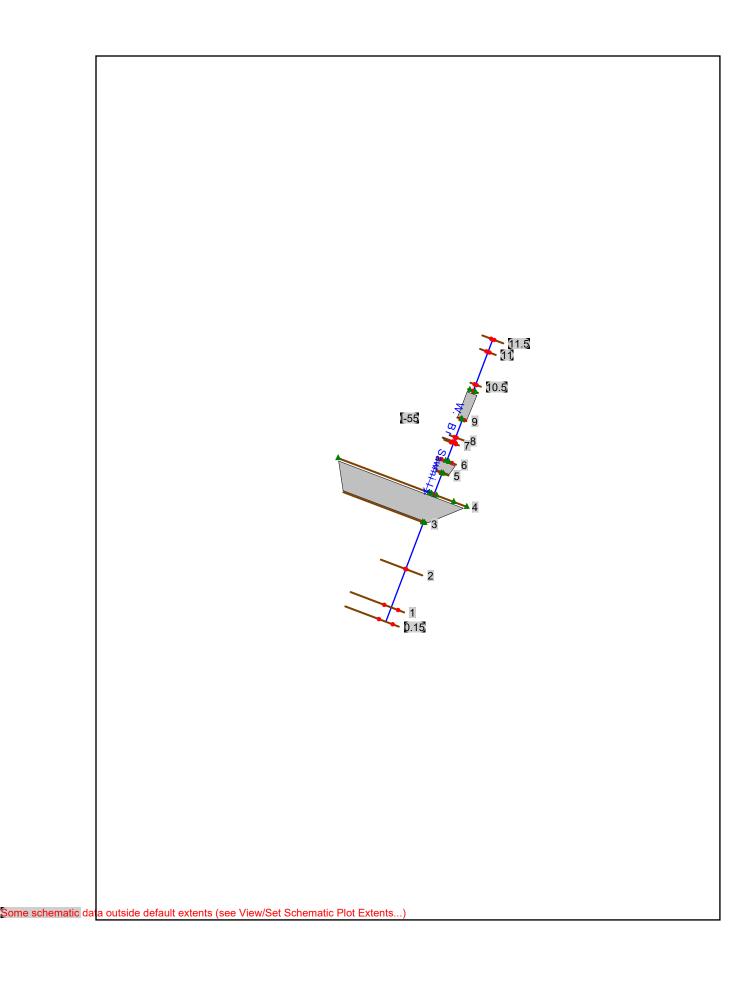
WSP2 XEQ 24 J 77 REV 03/11/74

DARIEN FLOOD INSURANCE STUDY SAWMILL CREEK WESTERN TRIB

ROAD SECTION WSASSR

NO.	. HW.	CFS	H	TW	CSM
0 1 2 3	717.50 723.58 726.09 726.24 726.50	0.00 149.00 245.00 290.00 420.00	0.00 6.72 8.96 8.88 8.88	0.00 716.86 717.13 717.36 717.70	0.00 10.00 50.00 100.00 500.00

MIN ROAD ELEVATION


725,70

HARZA

PAGE 218

TAB B

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 13.B
	DESIGN EXISTING CONDITIONS
g B	

HEC-RAS HEC-RAS 5.0.1 April 2016 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	Х	XX	XXXX
X	X	X	X	Х		Χ	X	X	Χ	X
X	X	X	Χ			Χ	X	X	Х	X
XXXXXXX					XXX	XXXX		XXXXXX		XXXX
X	X		X			Χ	X	X	Х	X
X	X	X	X	Х		Χ	X	X	Х	X
Х	Х	XXXXXX	XXXX			Х	X	X	Х	XXXXX

PROJECT DATA

Project Title: WBrSawCr Project File : WBrSawCr.prj

Run Date and Time: 9/9/2016 3:17:30 PM

Project in English units

Project Description:

2016 CBBEL model for I-55 over Sawmill Creek.

PLAN DATA

Plan Title: Ex CBBEL Start WSEL

Plan File: n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill Ck\WBrSawCr.p06

Geometry Title: Mod Ex Start WSEL

Geometry File : n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill

Ck\WBrSawCr.g06

Flow Title : Ex CBBEL Start WSEL

Flow File : n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill

Ck\WBrSawCr.f03

Plan Description:

Existing conditions of I-55 over West Branch of Sawmill Creek. Created from 2012 CBBEL survey Cross sections, structures, and select FIS cross sections. Starting water surface and flows from FIS profile near confluence with Wards Creek. Proper ineffective cones and expansion/contraction coefficients used. All elevations presented in NAVD 88.

Plan Summary Information:

Number of: Cross Sections = 15 Multiple Openings = Culverts = 3 Inline Structures = Bridges = 0 Lateral Structures = 0 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Maximum difference tolerance = 0.001 Flow tolerance factor

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed Flow

FLOW DATA

Flow Title: Ex CBBEL Start WSEL

Flow File : n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill Ck\WBrSawCr.f03

Flow Data (cfs)

River	Reach	RS	10-yr	50-yr	100-yr
500-yr	OT				
W. Br. Sawm	ill I-55	11.5	149	245	290
420	257.17				
W. Br. Sawm	ill I-55	10.5	178	290	345
495	302				
W. Br. Sawm	ill I-55	0.15	478	780	923
1290	804				

Boundary Conditions

River	I	Reach P	rofile	Upstream	Downstream
W. Br. WS = 679	Sawmill	I-55	10-yr	Known WS = 711.1	Known
W. Br. = 679.4	Sawmill	I-55	50-yr	Known WS = 714.7	Known WS
W. Br. = 679.7	Sawmill	I-55	100-yr	Known WS = 714.8	Known WS
W. Br. WS = 680	Sawmill	I-55	500-yr	Known WS = 715.2	Known
	Sawmill	I-55	OT	Known WS = 714.8	Known WS

GEOMETRY DATA

Geometry Title: Mod Ex Start WSEL

Geometry File: n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill Ck\WBrSawCr.g06

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 11.5

INPUT

Description: SWSW0016 WSP-2 XSC WSAV1 converted to NAVD88

 Station Elevation Data
 num=
 14

 Sta
 Elev
 T13.62
 -10
 713.22
 -15
 716.72
 -15
 713.62
 -10
 713.22
 -10
 713.22
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 7

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-100 .04 -15 .045 15 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -15 15 83 120 146 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 11

INPUT

Description: CBBEL XS 11

500+43.39

Station Elevation Data

tion Elevation Data num= 13 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 716.852 30.56 715.885 37.56 715.758 59.49 715.517 66.19 709.774 66.46 709.295 69.86 709.461 70.78 709.782 73.17 710.437 88.41 714.419 109.41 715.141 133.38 716.846 149.88 717.276

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 59.49 .042 88.41 .08

Right Coeff Contr. Expan. 290 .1 .3 Bank Sta: Left Right Lengths: Left Channel 59.49 88.41 255 312 255 312 290 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 10.5

INPUT

Description: SWSW0015 WSP-2 XSC WSAS3C converted to NAVD88

Station Elevation Data num= 11

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 -25
 711.42
 -10
 709.52
 -2
 707.32
 -1
 706.92

 2
 706.82
 3
 707.72
 10
 709.32
 25
 712.42
 Sta Elev Sta Elev -50 714.02 0 706.32 50 714.32

Manning's n Values num=

3 Sta n Val Sta n Val Sta n Val -50 .04 -10 .045 10 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -10 10 61 61 61 .3 .5

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 10

Description: CBBEL XS 10 - U/S of Access Road

504+15.12

Station Elevation Data num= 18

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 3.3 712.16 20.72 711.82 24.32 711.48 31.2 710.35 36.98 709.34 42.41 706.53 45.51 706.45 45.79 705.65 45.93 705.19 46.6 705.01 47.43 705.39 48.46 705.76 49.17 707.2 53.6 708.23 68.17 711.67 81.08 713.11 94.67 713.94

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 42.41 .042 49.17 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 273 271 269 .3 .5

42.41 49.17
Ineffective Flow num= 2
Sta L Sta R Elev Permanent 0 25 710.72 F 77.64 94.67 711

CULVERT

RIVER: W. Br. Sawmill

RS: 9.1 REACH: I-55

Description: Culvert Under Access Road, default internal cross sections, deck

length = culvert length.

FHWA Chart # 1 - Concrete Pipe Culvert

```
Distance from Upstream XS = 24.57
Deck/Roadway Width = 240.41
 Upstream Deck/Roadway Coordinates
          num= 10
             Sta Hi Cord Lo Cord
                                                                              Sta Hi Cord Lo Cord
                                                                                                                                              Sta Hi Cord Lo Cord

    -75
    712.4
    0
    -50
    711.7
    0
    -32
    711.39

    -22
    711.23
    0
    0
    711.02
    0
    9
    711

    18
    710.72
    0
    50
    710.88
    0
    93
    711.18

    137
    711.14
    0

                                                                                                                                             -32 711.39 0
                                                                                                                                                                                              Ω
              137 711.14
 Upstream Bridge Cross Section Data
Station Elevation Data num= 18
        Sta Elev Sta
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 42.41 .042 49.17 .08
Bank Sta: Left Right Coeff Contr. Expan.
42.41 49.17 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
        0 25 710.72 F
77.64 94.67 711 F
 Downstream Deck/Roadway Coordinates
             Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -75 712.4 0 -50 711.7 0 -32 711.39 0 -22 711.23 0 0 711.02 0 9 711 0 18 710.72 0 50 710.88 0 93 711.18 0 137 711.14 0
         num= 10
             Sta Hi Cord Lo Cord
Downstream Bridge Cross Section Data
Manning's n Values num=
   Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-19.128 .08 0 .042 37.59 .08
= 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
weir flow = .95
 Upstream Embankment side slope
 Downstream Embankment side slope
 Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
 Energy head used in spillway design
 Spillway height used in design
Weir crest shape
                                                                                                                    = Broad Crested
Number of Culverts = 1
Culvert Name Shape Rise Access Road Circular 3.5
                                                                                           Span
```

FHWA Scale # 2 - Groove end entrance with headwall

Solution Criteria = Highest U.S. EG

Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss

Coef

24.57 240.41

.013 0 .013

.2

1

Upstream Elevation = 705.15

Centerline Station = 46.9

Downstream Elevation = 701.44

Centerline Station = 26.73

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55

TNPUT

Description: CBBEL XS 9 - D/S of Access Road

506+86.95

Station Elevation Data num= 12

 Sta
 Elev
 Sta
 Elev</t 26.73 698.96 31.41 701.09 34.83 702.17 37.59 706.96 46.95 708.05 57.38 709.53 67 711

Manning's n Values num=

3 Sta n Val Sta n Val Sta n Val Sta -19.128 .08 0 .042 37.59

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 37.59 162 171 140 .3 .5

0 37.59

Ineffective Flow num= 2

Sta L Sta R Elev Permanent
-19.128 20.54 707.83 F
30.06 67 707.97 F

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 8

Description: CBBEL XS 8 - U/S of inline weir

508.57.37

14 num= Station Elevation Data

 Sta
 Elev
 Sta
 Sta
 Elev
 Sta
 Elev
 Sta
 Sta Elev -25 703.44 30.3 702.58

 Manning's n Values
 num=
 3

 Sta n Val
 Sta n Val
 Sta n Val

 -66.02
 .08
 13.2
 .042
 30.3
 .08

Lengths: Left Channel Right Coeff Contr. Expan. Bank Sta: Left Right 13.2 30.3 6 42 22 . 1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 7.5

TNPUT

Description: CBBEL XS 7.5 includes concrete wall that was an existing weir

Station Elevation Data num= 13
Sta Elev Sta Elev Sta Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 70.68 702.19 74.81 703.1 75.22 702.25 83.69 704 95.7 706 104.94 708 116.33 710 136.27 712 Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val
0 .08 28.08 .042 38.09 .015 83.69 .08

Bank Sta: Left Right 20.09 38.09 Lengths: Left Channel Right Coeff Contr. Expan. 18 14 .1 3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 7

INPUT

Description: CBBEL XS 7 -

509+26.76

18 Station Elevation Data num= Sta Elev Sta -34.07

Manning's n Values num= Sta n Val Sta n Val Sta n Val -34.07 .08 -5.4 .042 41.48 .08

Bank Sta: Left Right Lengths: Left Channel -5.4 41.48 137 170 Left Channel Right Coeff Contr. Expan. 137 170 167 .3 .5 .3 .5

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 6

Description: CBBEL XS 6 - U/S of N. Frontage Road

510+97.00

49.97 694.91 76.32 695.11 108.45 699.56 121.05 704.29 154 710

Manning's n Values num=

Sta n Val Sta n Val Sta n Val -29.9 .08 10 .042 108.45 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

10 108.45 114.5 114.5 126 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

-29.9 38 707.92 F

69 154 707.92 F

CULVERT

RIVER: W. Br. Sawmill

REACH: I-55 RS: 5.1

INPUT

Description: Culvert under N. Frontage Road, default internal cross sections, deck length = culvert length.

Distance from Upstream XS = Deck/Roadway Width = 89.8 Weir Coefficient = 2.7 Upstream Deck/Roadway Coordinates

```
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
-103.59 709.65 0 -53 708.9 0
47 707.92 0 107 707.99 0
                                                                Sta Hi Cord Lo Cord
                                                                0 708.09 0
                                                                313 710
Upstream Bridge Cross Section Data
Station Elevation Data num= 10

Sta Elev Sta Elev Sta Elev Sta Elev
-29.9 710 0 703.25 10 700.53 40 697.62
49.97 694.91 76.32 695.11 108.45 699.56 121.05 704.29
                                                                                43.33 694.99
154 710
Manning's n Values num=
                                             3
    Sta n Val Sta n Val Sta n Val
-29.9 .08 10 .042 108.45 .08
    -29.9
Sta L Sta R Elev Permane
-29.9 38 707.92 F
69 154 707.92 F
Downstream Deck/Roadway Coordinates
   num= 6
     Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
                                                                Sta Hi Cord Lo Cord

    -96
    709.65
    0
    -50
    708.9
    0

    56
    707.92
    0
    110
    707.99
    0

                                                                0 708.09 0
                                                                316 710
Downstream Bridge Cross Section Data
Station Elevation Data num= 14
   Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 702.83 20.61 700.5 46.67 696.29 48.49 692.49 49.18 690.83

      52.75
      689.92
      56.99
      688.56
      57.88
      688.67
      67.6
      691.12

      71.05
      693.24
      74.88
      700.8
      93.37
      702.21
      117.7
      704

                                                                                69.44 692.49
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 46.67 .042 74.88 .08
Bank Sta: Left Right Coeff Contr. Expan.
46.67 74.88 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
    0 48.5 702.68 F
65.2 117.7 702.68 F
                                            = 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
Upstream Embankment side slope
Downstream Embankment side slope
                                                           .95
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
                                                    = Broad Crested
Weir crest shape
Number of Culverts = 1
Cul Frontage
                   Shape Rise
Box 4
FHWA Chart # 8 - flared wingwalls
FHWA Scale # 1 - Wingwall flared 30 to 75 deg.
Solution Criteria = Highest U.S. EG
Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss
Coef
                                      .013 .013 0
                   13 89.8
                                                                                         . 4
Upstream Elevation = 694.97
            Centerline Station = 49.97
Downstream Elevation = 693.43
           Centerline Station = 57.2
```

CROSS SECTION

RIVER: W. Br. Sawmill

RS: 5 REACH: I-55

TNPUT

Description: CBBEL XS 5 - D/S of N. Frontage Road

512+11.70

Station Elevation Data num=

Sta Elev Sta Elev 0 702.83 20.61 700.5 Elev Sta Elev Sta Elev Sta Elev 700.5 46.67 696.29 48.49 692.49 49.18 690.83 52.75 689.92 56.99 688.56 57.88 688.67 67.6 691.12 69.44 692.49 71.05 693.24 74.88 700.8 93.37 702.21 117.7 704

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 46.67 .042 74.88 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
46.67 74.88 325 204 173 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent

0 48.5 702.68 F 65.2 117.7 702.68 F

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 4

TNPUT

Description: CBBEL XS 4 - U/S of I-55 and S. Frontage Road

514+16.11

Station Elevation Data num=
Sta Elev Sta Elev
-267.6 704 0 694.3 17 Sta Elev Sta Elev Sta Elev 0 694.3 16.63 689.071 29.66 688.728 44.72 687.921 89.38 693.591 45.82 687.1 48.6 687.347 52.04 687.238 61.08 691.994 698 698 365 698 960 704 140 410 696 660 696 750 698 950

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-267.6 .08 29.66 .042 61.08 .08

Bank Sta: Left Right Lengths: Left Channel 29.66 61.08 321 267 Ineffective Flow num= 4 Right Coeff Contr. Expan. 321 267 267 .3

Sta L Sta R Elev -267.6 -143 702.68 -143 20 701.32 Elev Permanent F F

 69.74
 89.4
 698.17

 89.4
 960
 698.17

 69.74

CULVERT

RIVER: W. Br. Sawmill

REACH: I-55 RS: 3.1

Description: Culvert under I-55 and South Frontage Road, default internal cross sections, deck length = culvert length.

Distance from Upstream XS = 22.37 Deck/Roadway Width = 232.74 Weir Coefficient = 2.7 Upstream Deck/Roadway Coordinates num= 26

Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -178 701.83

 -278
 701.88
 -228
 701.87
 -178
 701.83

 -128
 701.79
 -78
 701.75
 -28
 701.55

```
22 701.32
                            72 701.03
222 700.33
372 699.36
522 698.41
                                                       122 700.83
272 700.02
422 698.88
      172 700.6
      322
            699.4
      472 698.64
                                                             572 698.22
      622 698.17
                                 672 698.23
                                                              722 698.2
      772 698.33
922 699.29
                                 822 698.64
972 699.57
                                                              872 698.94
Upstream Bridge Cross Section Data
Station Elevation Data num= 17

        Sta
        Elev
        Sta
        Elev
        Sta
        Elev

        267.6
        704
        0
        694.3
        16.63
        689.071
        29.66
        688.728

                                                                              Sta
                                                                                        Elev
  -267.6
                                                                             44.72 687.921
     5.82 687.1 48.6 687.347 52.04 687.238 61.08 691.994
140 698 365 698 410 696 660 696
950 698 960 704
                                                                             89.38 693.591
750 698
   45.82
     140
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-267.6 .08 29.66 .042 61.08 .08
Bank Sta: Left Right Coeff Contr. Expan.
29.66 61.08 .3 .5
Ineffective Flow num= 4
  Sta L Sta R Elev Permane
-267.6 -143 702.68 F
                       Elev Permanent
   -143
              20 701.32
                                    F
   69.74 89.4 698.17
89.4 960 698.17
                             F
F
Downstream Deck/Roadway Coordinates
              18
    num=
     Sta Hi Cord Lo Cord
                                Sta Hi Cord Lo Cord
                                                              Sta Hi Cord Lo Cord
                         13 701.32 0

0 163 700.6 0

0 313 699.4 0

463 698.64

613 698.17

763 698.33
      -37 701.55
                                                              63 701.03 0
     113 700.83
263 700.02
413 698.88
                                                              213 700.33
363 699.36
                                                             513 698.41
                                                             663 698.23
      563 698.22
      713 698.2
                                  763 698.33
                                                              813 698.64
Downstream Bridge Cross Section Data
25.41 681.37 30.02 681.76 32.85 682.782 34.34 683.32
37.2 686.29 51.54 687.29 110 692 225 692
685 686 790 688
                                                                             35.4 684.42
                                                                               325 686
Manning's n Values num= 3

Sta n Val Sta n Val Sta n Val
0 .08 14.71 .042 37.2 .08
= 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
weir flow = .95
Upstream Embankment side slope
Downstream Embankment side slope
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                                  = Broad Crested
Number of Culverts = 1
Culvert Name Shape Rise Culv # 1 Box 4
                                          Span
                                         5
FHWA Chart # 8 - flared wingwalls
```

FHWA Scale # 1 - Wingwall flared 30 to 75 deg.

Solution Criteria = Highest U.S. EG

Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss Coef

. 4

1

.013 .013 0 22.37 232.74 Upstream Elevation = 686.93

Centerline Station = 48.89

Downstream Elevation = 683.12

Centerline Station = 23.95

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 3

TNPUT

Description: CBBEL XS 3 - D/S of I-55 and S. Frontage Road

516+83.31

17

Station Elevation Data num=
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 16.8 683 18.35 681.28 20.71 680.61 Sta Elev 0 686.94 14.71 685.85 25.41 681.37 30.02 681.76 32.85 682.782 34.34 683.32 37.2 686.29 51.54 687.29 110 692 225 692 685 686 790 688 35.4 684.42 325 686

685

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 14.71 .042 37.2 .08

Right Coeff Contr. Expan. 326 .3 .5 Bank Sta: Left Right Lengths: Left Channel 14.71 37.2 364 445 .5

14.71 37.2
Ineffective Flow num= 2
Sta L Sta R Elev Permanent
0 15.5 694.22 F
32.39 790 692.65 F

CROSS SECTION

RIVER: W. Br. Sawmill

RS: 2 REACH: I-55

TNPUT

Description: CBBEL XS 2

521+27.64

14 Station Elevation Data num=

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 0
 686.69
 114
 680.35
 154
 680.39
 156
 679.12
 Sta Elev 157.5 679.25 159 679.74 162.2 680.75 178.8 679.71 206.4 679.59 240.8 679.76 261.3 679.43 306.3 679.4 344.55 680 395.25 682

3 Manning's n Values num=

Sta n Val Sta n Val Sta n Val 0 .08 154 .042 162.2 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 154 162.2 255 366 108 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 1

Description: CBBEL XS 1 extended with 2' topo 524+93.75

Station Elevation Data num= 9

Sta Elev Sta Elev Sta Elev Sta 69.56 684 -147.66 682 -130 680 -112 20 677.94 92 677.67 153 678 341.1 Sta Elev 0 677.67 Elev 678 680 -169.56

 Manning's n Values
 num=
 3

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 -169.56
 .08
 -112
 .042
 20
 .08

Bank Sta: Left Right Lengths: Left Channel -112 20 500 136 Right Coeff Contr. Expan. 350 .1 .3 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 0.15

INPUT

Description: Copy of CBBEL XS 1 extended with 2' topo for use as assumed XS at confluence with Wards Creek. No vertical adjustment to XS 0.15 to be conservative.

 Station Elevation Data
 num=
 9

 Sta
 Elev
 Sta
 Elev
 Sta

 -169.56
 684
 -147.66
 682
 -130

 20
 677.94
 92
 677.67
 153

 Elev Sta Elev Sta Elev 680 -112 678 0 677.67 678 341.1 680

Manning's n Values

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-169.56 .08 -112 .042 20 .08

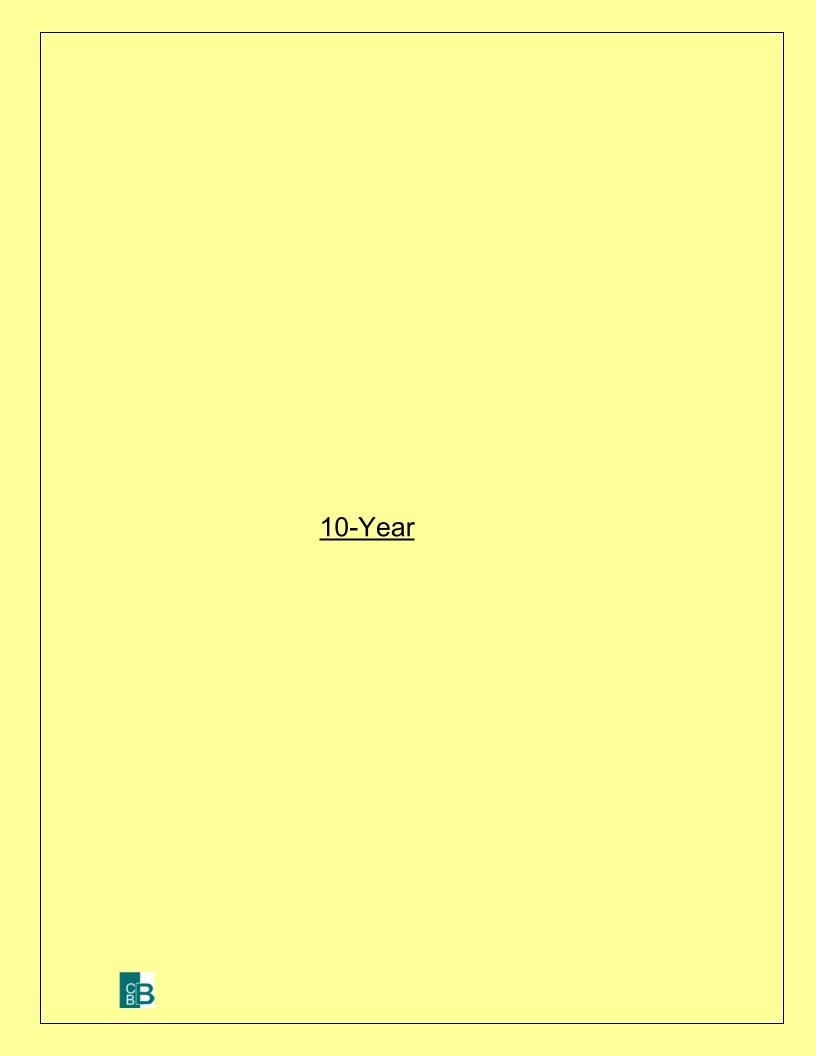
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -112 20 0 0 0 .1 .3 .1 .3

SUMMARY OF MANNING'S N VALUES

River:W. Br. Sawmill

Reach	River Sta.	n1	n2	n3	n4
I-55	11.5	.04	.045	.04	
I-55	11	.08	.042	.08	
I-55	10.5	.04	.045	.04	
I-55	10	.08	.042	.08	
I-55	9.1	Culvert			
I-55	9	.08	.042	.08	
I-55	8	.08	.042	.08	
I-55	7.5	.08	.042	.015	.08
I-55	7	.08	.042	.08	
I-55	6	.08	.042	.08	
I-55	5.1	Culvert			
I-55	5	.08	.042	.08	
I-55	4	.08	.042	.08	
I-55	3.1	Culvert			
I-55	3	.08	.042	.08	
I-55	2	.08	.042	.08	
I-55	1	.08	.042	.08	
I-55	0.15	.08	.042	.08	

SUMMARY OF REACH LENGTHS

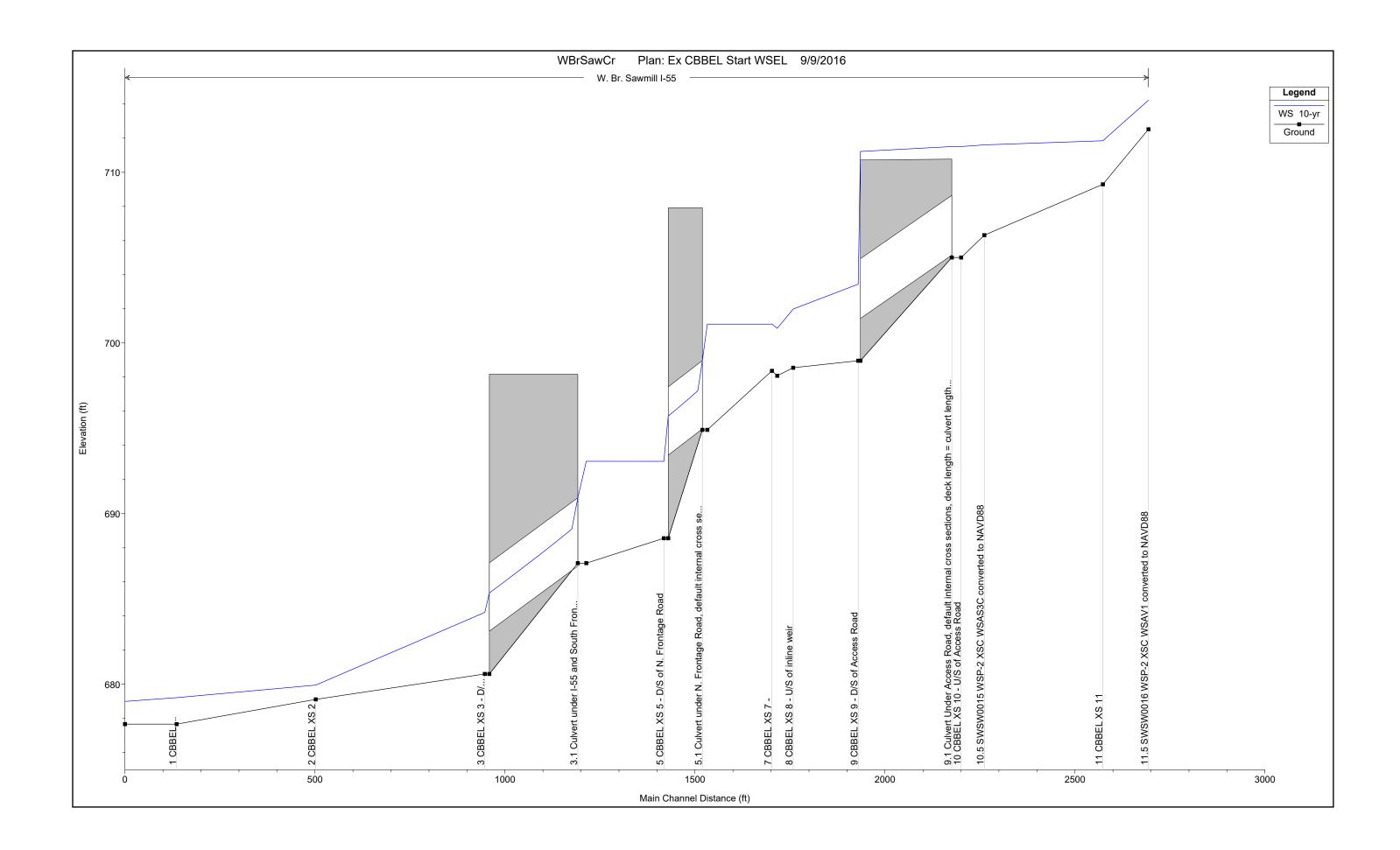

River: W. Br. Sawmill

Reach	River Sta.	Left	Channel	Right
I-55 I-55 I-55 I-55 I-55	11.5 11 10.5 10 9.1	83 255 61 273 Culvert	120 312 61 271	146 290 61 269

I-55	9	162	171	140
I-55	8	6	42	22
I-55	7.5	18	14	3
I-55	7	137	170	167
I-55	6	114.5	114.5	126
I-55	5.1	Culvert		
I-55	5	325	204	173
I-55	4	321	267	267
I-55	3.1	Culvert		
I-55	3	364	445	326
I-55	2	255	366	108
I-55	1	500	136	350
I-55	0.15	0	0	0

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: W. Br. Sawmill

Reach	River	Sta.	Contr.	Expan.
I-55	11.5		.1	.3
I-55	11		.1	.3
I-55	10.5		.3	.5
I-55	10		.3	.5
I-55	9.1	Cul	vert	
I-55	9		.3	.5
I-55	8		.1	.3
I-55	7.5		.1	.3
I-55	7		.3	.5
I-55	6		.3	.5
I-55	5.1	Cul	vert	
I-55	5		.3	.5
I-55	4		.3	.5
I-55	3.1	Cul	vert	
I-55	3		.3	.5
I-55	2		.1	.3
I-55	1		.1	.3
I-55	0.15		.1	.3

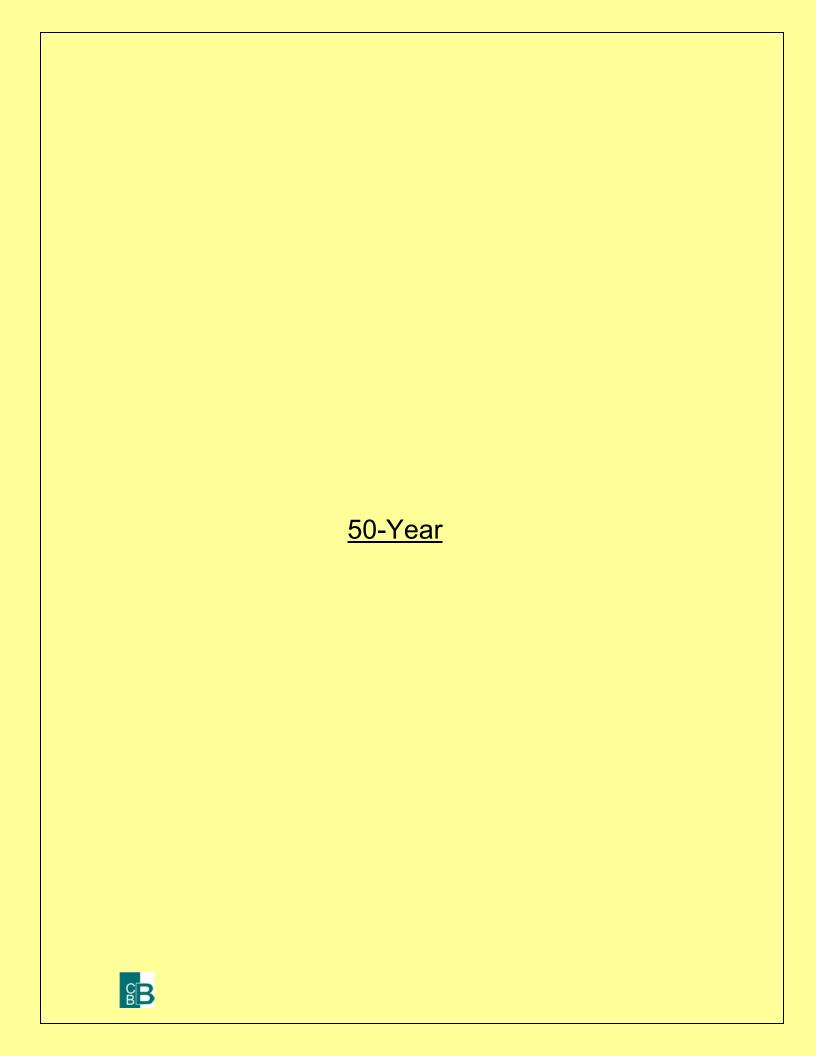


HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 10-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	10-yr	149.00	712.52	714.22	713.89	714.39	0.008935	3.39	45.64	45.88	0.56
I-55	11	10-yr	149.00	709.30	711.85	711.85	712.59	0.026100	6.92	21.54	14.80	1.01
I-55	10.5	10-yr	178.00	706.32	711.61	709.40	711.67	0.000769	2.06	100.93	47.88	0.19
I-55	10	10-yr	178.00	705.01	711.51	708.75	711.60	0.001032	2.98	109.87	43.48	0.22
I-55	9.1		Culvert									
I-55	9	10-yr	178.00	698.96	703.45	701.78	703.81	0.003195	4.81	37.02	24.76	0.43
I-55	8	10-yr	178.00	698.55	701.99	701.99	702.64	0.018188	6.49	30.47	38.43	0.87
I-55	7.5	10-yr	178.00	698.08	700.86	700.24	701.41	0.018540	5.93	30.00	12.32	0.67
I-55	7	10-yr	178.00	698.37	701.11		701.20	0.002287	2.43	73.38	40.06	0.32
I-55	6	10-yr	178.00	694.91	701.11	696.10	701.12	0.000077	0.99	180.27	104.71	0.07
I-55	5.1		Culvert									
I-55	5	10-yr	178.00	688.56	693.07	691.19	693.22	0.001804	3.17	56.19	22.46	0.30
I-55	4	10-yr	178.00	687.10	693.07	689.18	693.09	0.000126	1.07	192.85	76.23	0.09
I-55	3.1		Culvert									
I-55	3	10-yr	178.00	680.61	684.22	683.05	684.47	0.004127	4.08	43.67	19.30	0.44
I-55	2	10-yr	178.00	679.12	679.96	679.96	680.11	0.083200	6.09	62.56	171.82	1.53
I-55	1	10-yr	178.00	677.67	679.22	678.09	679.23	0.000185	0.60	447.37	390.96	0.09
I-55	0.15	10-yr	478.00	677.67	679.00	678.33	679.04	0.002455	1.95	363.01	368.05	0.32

HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 10-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	10-yr	714.39	714.22	0.17	1.75	0.06	0.90	116.14	31.95	45.88
I-55	11	10-yr	712.59	711.85	0.74	0.61	0.21		149.00		14.80
I-55	10.5	10-yr	711.67	711.61	0.06	0.05	0.01	17.98	145.94	14.08	47.88
I-55	10	10-yr	711.60	711.51	0.09			28.37	110.86	38.78	43.48
I-55	9.1		Culvert								
I-55	9	10-yr	703.81	703.45	0.36	1.08	0.09		178.00		24.76
I-55	8	10-yr	702.64	701.99	0.65	0.77	0.03	2.42	175.58		38.43
I-55	7.5	10-yr	701.41	700.86	0.55	0.07	0.14		178.00		12.32
I-55	7	10-yr	701.20	701.11	0.09	0.04	0.04		178.00		40.06
I-55	6	10-yr	701.12	701.11	0.02				178.00		104.71
I-55	5.1		Culvert								
I-55	5	10-yr	693.22	693.07	0.16	0.07	0.07		178.00		22.46
I-55	4	10-yr	693.09	693.07	0.02			22.13	154.55	1.33	76.23
I-55	3.1		Culvert								
I-55	3	10-yr	684.47	684.22	0.26	4.31	0.05		178.00		19.30
I-55	2	10-yr	680.11	679.96	0.15	0.13	0.04		15.03	162.97	171.82
I-55	1	10-yr	679.23	679.22	0.00	0.18	0.00	1.22	110.28	66.50	390.96
I-55	0.15	10-yr	679.04	679.00	0.04			2.60	300.41	174.99	368.05

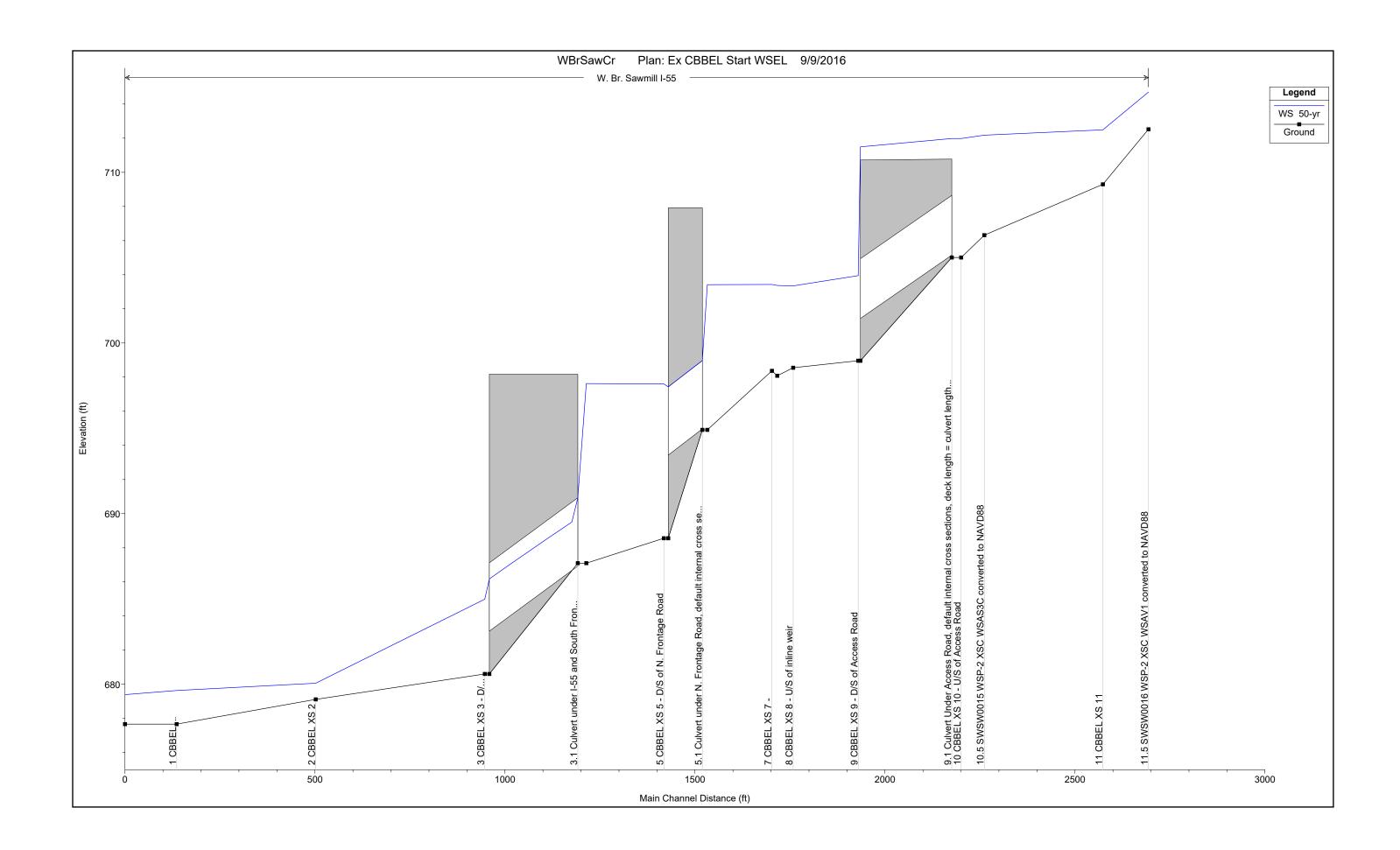


Errors Warnings and Notes for Plan: Ex Start WSEL

	ings and Notes for Plan : Ex Start WSEL							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11.5 Profile: 10-yr							
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for							
	additional cross sections.							
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7							
	or greater than 1.4. This may indicate the need for additional cross sections.							
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.							
	This may indicate the need for additional cross sections.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 10-yr							
Warning:	The energy equation could not be balanced within the specified number of iterations. The program							
	used critical depth for the water surface and continued on with the calculations.							
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for							
	additional cross sections.							
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7							
	or greater than 1.4. This may indicate the need for additional cross sections.							
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical							
vvarring.	depth, the calculated water surface came back below critical depth. This indicates that there is not							
	a valid subcritical answer. The program defaulted to critical depth.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 10-yr							
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water							
Note.	surface was used.							
1								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 10-yr							
Warning:	The flow through the culvert is supercritical. However, since there is flow over the road (weir							
	flow), the program cannot determine if the downstream cross section should be subcritical or							
	supercritical. The program used the downstream subcritical answer, even though it may not be							
	valid.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 10-yr Culv: Access Road							
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the							
	downstream cross section. The program used the solution with the least error.							
Note:	The flow in the culvert is entirely supercritical.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 10-yr							
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7							
	or greater than 1.4. This may indicate the need for additional cross sections.							
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.							
	This may indicate the need for additional cross sections.							
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water							
	surface was used.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 10-yr							
Warning:	The energy equation could not be balanced within the specified number of iterations. The program							
	used critical depth for the water surface and continued on with the calculations.							
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.							
<u> </u>	This may indicate the need for additional cross sections.							
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical							
	depth, the calculated water surface came back below critical depth. This indicates that there is not							
	a valid subcritical answer. The program defaulted to critical depth.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 10-yr							
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7							
vvaiiiiiy.								
Noto:	or greater than 1.4. This may indicate the need for additional cross sections.							
Note:	Manning's n values were composited to a single value in the main channel.							
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 10-yr							
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7							
	or greater than 1.4. This may indicate the need for additional cross sections.							
Location:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 10-yr							

Errors Warnings and Notes for Plan : Ex Start WSEL (Continued)

Multiple critical depths were found at this location. The critical depth with the lowest, valid, water									
surface was used.									
River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 10-yr									
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water									
surface was used.									
During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.									
River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 10-yr Culv: Cul Frontage									
During the supercritical analysis, the program could not converge on a supercritical answer in the									
downstream cross section. The program used the solution with the least error.									
The flow in the culvert is entirely supercritical.									
River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 10-yr									
The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
or greater than 1.4. This may indicate the need for additional cross sections.									
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water									
surface was used.									
River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 10-yr									
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water									
surface was used.									
River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 10-yr									
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water									
surface was used.									
During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.									
River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 10-yr Culv: Culv # 1									
During the supercritical analysis, the program could not converge on a supercritical answer in the									
downstream cross section. The program used the solution with the least error.									
The flow in the culvert is entirely supercritical.									
River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 10-yr									
The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
or greater than 1.4. This may indicate the need for additional cross sections.									
The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.									
This may indicate the need for additional cross sections.									
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water									
surface was used.									
River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 10-yr									
The energy equation could not be balanced within the specified number of iterations. The program									
used critical depth for the water surface and continued on with the calculations.									
Divided flow computed for this cross-section.									
The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
or greater than 1.4. This may indicate the need for additional cross sections.									
During the standard step iterations, when the assumed water surface was set equal to critical									
depth, the calculated water surface came back below critical depth. This indicates that there is not									
a valid subcritical answer. The program defaulted to critical depth.									
River: W. Br. Sawmill Reach: I-55 RS: 1 Profile: 10-yr									
Hydraulic jump has occurred between this cross section and the previous upstream section.									

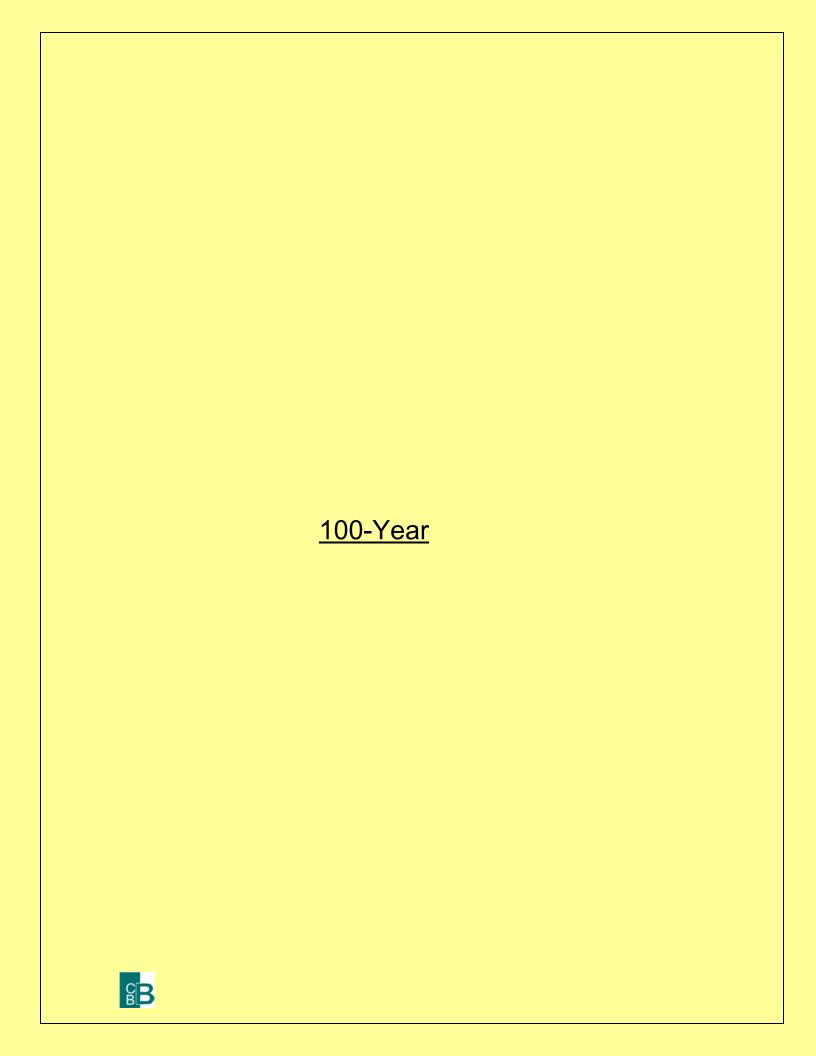


HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 50-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	50-yr	245.00	712.52	714.70	714.18	714.91	0.006838	3.75	68.43	49.50	0.52
I-55	11	50-yr	245.00	709.30	712.49	712.49	713.40	0.024429	7.65	32.03	17.99	1.01
I-55	10.5	50-yr	290.00	706.32	712.18	709.98	712.27	0.001062	2.67	130.60	56.13	0.23
I-55	10	50-yr	290.00	705.01	711.98	709.55	712.16	0.001896	4.27	132.21	51.83	0.31
I-55	9.1		Culvert									
I-55	9	50-yr	290.00	698.96	703.94	702.63	704.69	0.005677	6.94	41.76	26.11	0.58
I-55	8	50-yr	290.00	698.55	703.35		703.60	0.004387	4.51	96.57	56.86	0.47
I-55	7.5	50-yr	290.00	698.08	703.37		703.51	0.001001	1.78	114.42	57.10	0.15
I-55	7	50-yr	290.00	698.37	703.43		703.47	0.000436	1.70	175.76	52.79	0.15
I-55	6	50-yr	290.00	694.91	703.42	696.53	703.44	0.000068	1.15	251.78	119.46	0.07
I-55	5.1		Culvert									
I-55	5	50-yr	290.00	688.56	697.61	691.80	697.68	0.000278	2.20	131.99	34.73	0.14
I-55	4	50-yr	290.00	687.10	697.62	689.58	697.63	0.000030	0.83	419.35	586.97	0.05
I-55	3.1		Culvert									
I-55	3	50-yr	290.00	680.61	684.99	683.66	685.40	0.004831	5.12	56.67	20.61	0.49
I-55	2	50-yr	290.00	679.12	680.07	680.07	680.29	0.094643	6.99	82.26	178.69	1.66
I-55	1	50-yr	290.00	677.67	679.64	678.19	679.65	0.000194	0.73	619.60	433.98	0.10
I-55	0.15	50-yr	780.00	677.67	679.40	678.53	679.46	0.002327	2.30	518.49	409.27	0.32

HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 50-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	50-yr	714.91	714.70	0.20	1.44	0.07	3.74	182.00	59.26	49.50
I-55	11	50-yr	713.40	712.49	0.91	0.80	0.25		245.00		17.99
I-55	10.5	50-yr	712.27	712.18	0.09	0.08	0.03	40.21	219.83	29.96	56.13
I-55	10	50-yr	712.16	711.98	0.18			50.96	172.31	66.73	51.83
I-55	9.1		Culvert								
I-55	9	50-yr	704.69	703.94	0.75	0.84	0.25		290.00		26.11
I-55	8	50-yr	703.60	703.35	0.25	0.06	0.04	64.44	224.98	0.58	56.86
I-55	7.5	50-yr	703.51	703.37	0.13	0.01	0.03		113.48	176.52	57.10
I-55	7	50-yr	703.47	703.43	0.04	0.02	0.01		288.18	1.82	52.79
I-55	6	50-yr	703.44	703.42	0.02				290.00		119.46
I-55	5.1		Culvert								
I-55	5	50-yr	697.68	697.61	0.08	0.01	0.03		290.00		34.73
I-55	4	50-yr	697.63	697.62	0.01			36.86	238.49	14.65	586.97
I-55	3.1		Culvert								
I-55	3	50-yr	685.40	684.99	0.41	5.01	0.09		290.00		20.61
I-55	2	50-yr	680.29	680.07	0.22	0.14	0.06		21.39	268.61	178.69
I-55	1	50-yr	679.65	679.64	0.01	0.18	0.01	2.73	174.68	112.59	433.98
I-55	0.15	50-yr	679.46	679.40	0.06			6.21	477.55	296.25	409.27

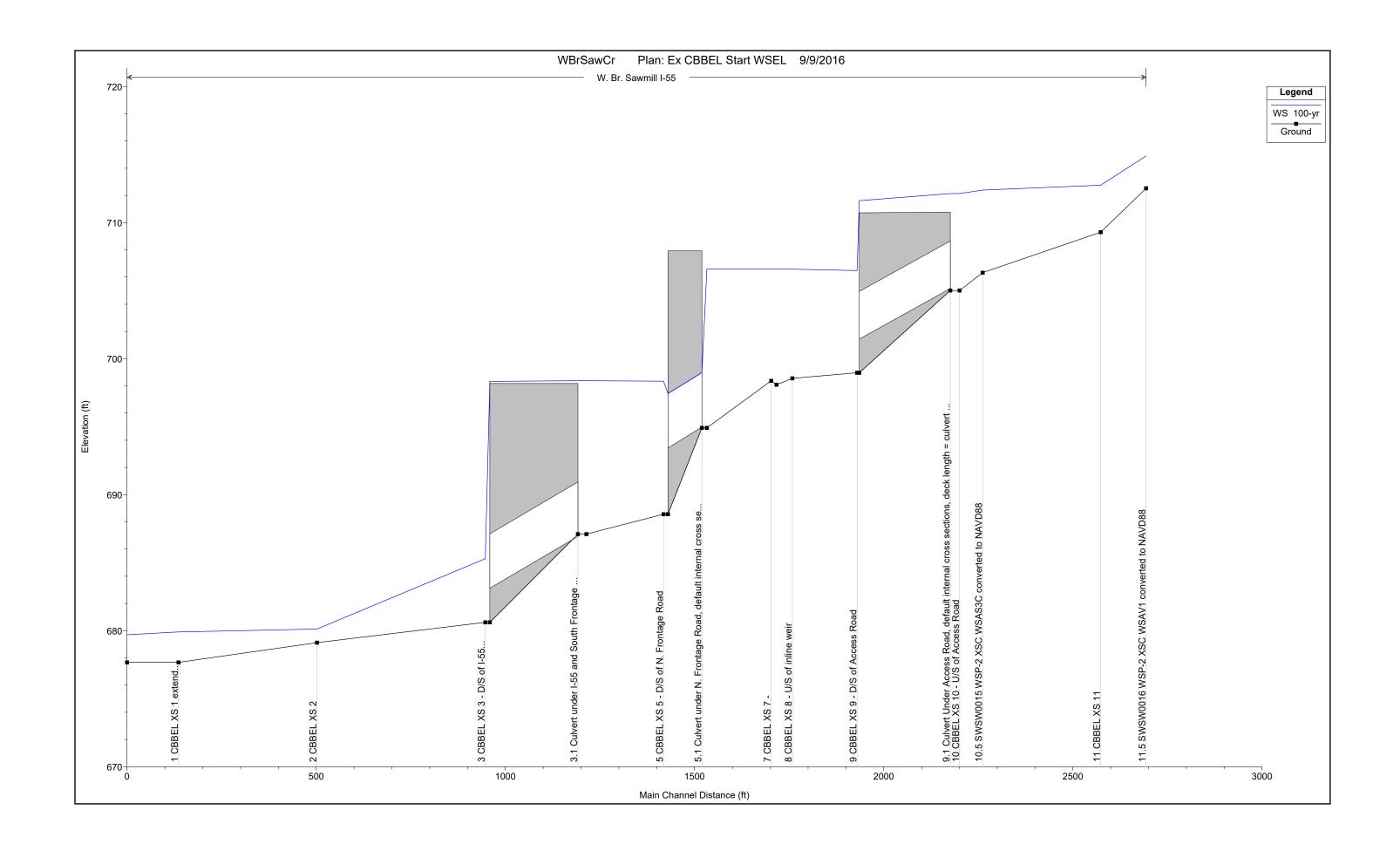


Errors Warnings and Notes for Plan: Ex Start WSEL

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.6 in (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: 1-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: Dire energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step literations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Marning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer in the downstream cross section. The flow in the culvert is entirely supercritical. Location: River: W. Br. Sawmill Reach: I-55 R	Note:	The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: 1.55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections additional cross sections additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m) between the current and previous cross section. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. River: W. Br. Sawmill Reach: 1-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: 1-55 RS: 9.1 Profile: 50-yr Culv: Access Road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. Program section and the solution with the least error. Note: Mellow the culvert is entirely supercritical. Location: River: W. Br. Sawmill Reach: 1-55 RS: 9 Profile: 50-yr Culv: Access Roa									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: During the supercritical analysis, the program used the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subcritical answer in the downstream cross section. The program used the downstream conveyance on a supercritical answer in the downstream cross section. The program used the downstream conveyance on a supercrit									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Culv: Access Road Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This ma									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program used the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though i	Loopties								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culver it is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Culv: Access Road Warning: The flow through the culver is entirely supercritical.	Note:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: 1-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: Uning the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: Wire: W. Br. Sawmill Reach: 1-55 RS: 0 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section as supercritical answer in the downstream cross section. The program used the									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: 1-55 Rs: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. Location: River: W. Br. Sawmill Reach: 1-55 Rs: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: 1-55 Rs: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: 1-55 Rs: 9.1 Profile: 50-yr Warning: The energy loss was greater t									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River; W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: Ouring the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Marning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The energy loss was greater than 1.0 ft (0.3 m), between the	Warning:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9. Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program cannot determine if the downstream cross section as pupercritical answer in the downstream cross section. The program used t									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream converge on a supercritical answer in the downstream cross section. The program used the solution with t									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: 1-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical answer in the downstream cross section. The program used the downstream converge on a supercritical answer in the downstream cross section. The program used the solution with the least error. Note: The flow in the culvert is entirely supercritical. Locat		,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. River: W. Br. Sawmill Reach: 1-55 RS: 11 Profile: 50-yr The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: 1-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: 1-55 RS: 9.1 Profile: 50-yr Culv: Access Road Warning: The flow in the culvert is entirely supercritical. Location: The flow in th	vvarning:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. River: W. Br. Sawmill Reach: 1-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: 1-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section assumer in the downstream cross section. The program could not converge on a supercritical answer in the downstream cross section. The program used the solution with the least error. Note: The flow in the culvert is entirely supercritical. Locatio									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or sup	l	·							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subc	vvarning:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subcritical answer in the downstre		·							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section analysis, the program used the solution wi	Locations								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Loca	INOIE:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Culv: Access Road Warning: The flow in the culvert is entirely supercritical. River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 50	Noto								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section a supercritical answer in the downstream cro	vvarning:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1		,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream converge on a supercritical answer in the downstream cros									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Culv: Access Road Warning: During the supercritical analysis, the program could not converge on a supercritical answer in the	Noto:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program cannot determine if the downstream cross section should be subcritical or sup	vvarning:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream subcritical answer, even though it may not be valid.		,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or supercritical. The program used the downstream cross section should be subcritical or	Location:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir flow), the program cannot determine if the downstream cross section should be subcritical or									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Warning: The flow through the culvert is supercritical. However, since there is flow over the road (weir									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr	··uiiiiig.								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.		,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water	ocation:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. Location: River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.		1 1 1 1							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not	Location [.]								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.	Warning:	,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7	Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for	Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr Warning: The energy equation could not be balanced within the specified number of iterations. The program	Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections. Location: River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr		used critical depth for the water surface and continued on with the calculations.							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.	Warning:	The energy equation could not be balanced within the specified number of iterations. The program							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.	Location:	,							
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7	Warning:								
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.									
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for	Warning:								
	rrannig.								
		and the second s							
Errors Warnings and Notes for Plan : Ex Start WSEL	Location:	River: W. Br. Sawmill Reach: I-55 RS: 11.5 Profile: 50-yr							

Errors Warnings and Notes for Plan : Ex Start WSEL (Continued)

	the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet								
	answer will be used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 50-yr								
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7								
	or greater than 1.4. This may indicate the need for additional cross sections.								
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water								
	surface was used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 50-yr								
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water								
	surface was used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 50-yr								
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water								
	surface was used.								
Note:	During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 50-yr Culv: Culv # 1								
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the								
	downstream cross section. The program used the solution with the least error.								
Note:	Culvert critical depth exceeds the height of the culvert.								
Note:	The flow in the culvert is entirely supercritical.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 50-yr								
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7								
	or greater than 1.4. This may indicate the need for additional cross sections.								
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.								
	This may indicate the need for additional cross sections.								
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water								
	surface was used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 50-yr								
Warning:	The energy equation could not be balanced within the specified number of iterations. The program								
	used critical depth for the water surface and continued on with the calculations.								
Warning:	Divided flow computed for this cross-section.								
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7								
	or greater than 1.4. This may indicate the need for additional cross sections.								
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical								
	depth, the calculated water surface came back below critical depth. This indicates that there is not								
	a valid subcritical answer. The program defaulted to critical depth.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 1 Profile: 50-yr								
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.								

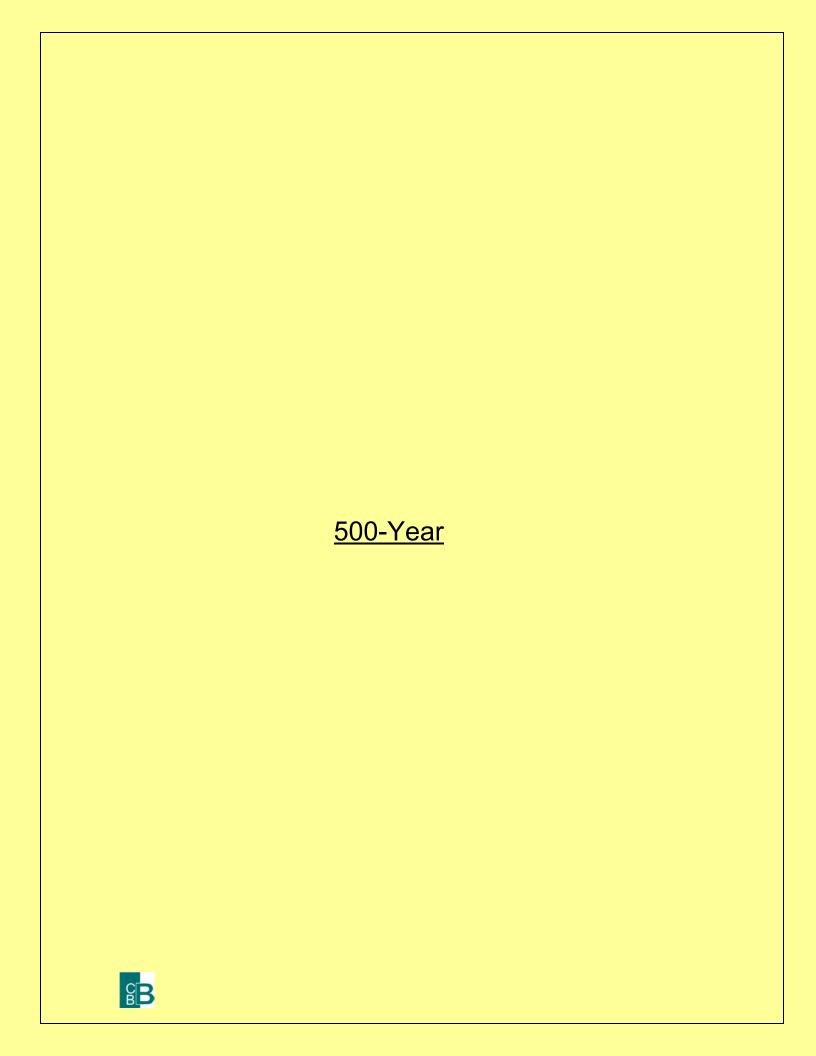


HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 100-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	100-yr	290.00	712.52	714.90	714.31	715.12	0.006271	3.88	78.53	51.02	0.51
I-55	11	100-yr	290.00	709.30	712.75	712.75	713.71	0.023370	7.85	36.95	19.31	1.00
I-55	10.5	100-yr	345.00	706.32	712.39	710.25	712.50	0.001195	2.93	142.95	59.23	0.25
I-55	10	100-yr	345.00	705.01	712.14	709.95	712.37	0.002378	4.87	140.55	54.80	0.35
I-55	9.1		Culvert									
I-55	9	100-yr	345.00	698.96	706.48	703.00	706.90	0.001759	5.24	65.87	32.97	0.35
I-55	8	100-yr	345.00	698.55	706.58		706.61	0.000276	1.86	318.41	81.53	0.13
I-55	7.5	100-yr	345.00	698.08	706.58		706.61	0.000034	0.40	330.82	77.67	0.03
I-55	7	100-yr	345.00	698.37	706.59		706.60	0.000074	1.03	392.81	84.48	0.07
I-55	6	100-yr	345.00	694.91	706.58	696.74	706.60	0.000032	0.99	349.89	149.02	0.05
I-55	5.1		Culvert									
I-55	5	100-yr	345.00	688.56	698.34	692.07	698.43	0.000292	2.39	144.31	39.68	0.14
I-55	4	100-yr	345.00	687.10	698.38	689.75	698.38	0.000016	0.64	1632.82	1063.10	0.04
I-55	3.1		Culvert									
I-55	3	100-yr	345.00	680.61	685.29	683.94	685.78	0.005153	5.59	61.68	21.12	0.52
I-55	2	100-yr	345.00	679.12	680.12	680.12	680.37	0.094961	7.23	91.80	181.14	1.67
I-55	1	100-yr	345.00	677.67	679.90	678.23	679.91	0.000168	0.75	737.35	461.10	0.09
I-55	0.15	100-yr	923.00	677.67	679.70	678.61	679.75	0.001746	2.24	645.90	440.19	0.29

HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 100-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	100-yr	715.12	714.90	0.22	1.34	0.07	5.64	211.83	72.53	51.02
I-55	11	100-yr	713.71	712.75	0.96	0.87	0.25		290.00		19.31
I-55	10.5	100-yr	712.50	712.39	0.11	0.10	0.04	52.70	253.77	38.53	59.23
I-55	10	100-yr	712.37	712.14	0.23			62.96	201.49	80.55	54.80
I-55	9.1		Culvert								
I-55	9	100-yr	706.90	706.48	0.43	0.10	0.20		345.00		32.97
I-55	8	100-yr	706.61	706.58	0.03	0.00	0.00	137.96	195.61	11.43	81.53
I-55	7.5	100-yr	706.61	706.58	0.03	0.00	0.00		45.75	299.25	77.67
I-55	7	100-yr	706.60	706.59	0.02	0.01	0.00	3.00	325.42	16.58	84.48
I-55	6	100-yr	706.60	706.58	0.02				345.00		149.02
I-55	5.1		Culvert								
I-55	5	100-yr	698.43	698.34	0.09	0.01	0.04		345.00		39.68
I-55	4	100-yr	698.38	698.38	0.00			31.01	199.54	114.44	1063.10
I-55	3.1		Culvert								
I-55	3	100-yr	685.78	685.29	0.49	5.28	0.12		345.00		21.12
I-55	2	100-yr	680.37	680.12	0.25	0.12	0.07		24.30	320.70	181.14
I-55	1	100-yr	679.91	679.90	0.01	0.15	0.00	3.78	204.09	137.13	461.10
I-55	0.15	100-yr	679.75	679.70	0.05			9.02	553.68	360.30	440.19

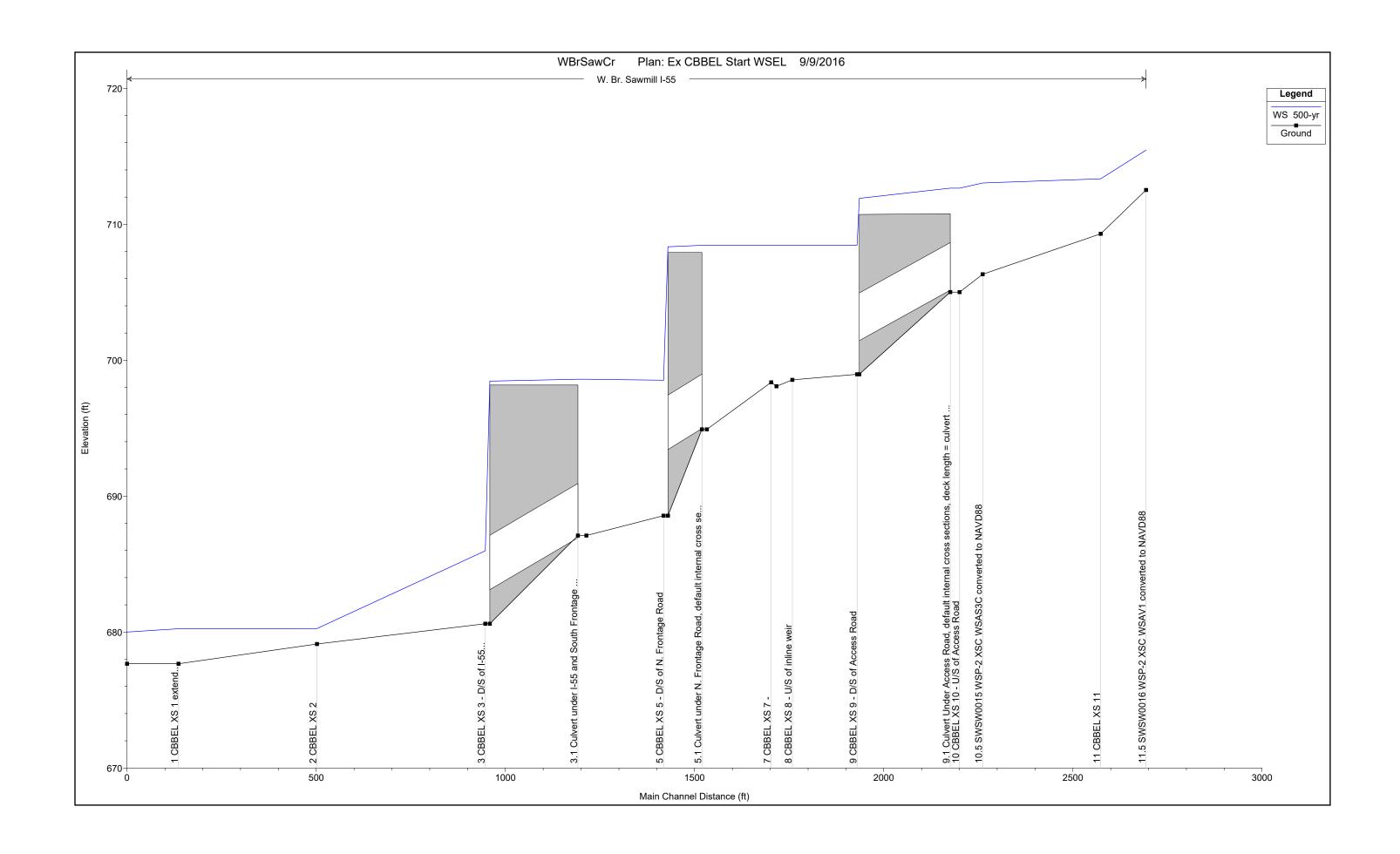


Errors Warnings and Notes for Plan: Ex Start WSEL

	answer will be used.
	· · · · · · · · · · · · · · · · · · ·
	the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet
Note:	The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore,
Note:	During the supercritical calculations a hydraulic jump occurred inside of the culvert.
Note:	Culvert critical depth exceeds the height of the culvert.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 100-yr Culv: Cul Frontage
INULE.	surface was used.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
Location:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 100-yr
vvarrilly.	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 100-yr
Note:	Manning's n values were composited to a single value in the main channel.
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 100-yr
uiiiiig.	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 100-yr
	surface was used.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 100-yr
	surface was used.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 100-yr
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10.5 Profile: 100-yr
	a valid subcritical answer. The program defaulted to critical depth.
	depth, the calculated water surface came back below critical depth. This indicates that there is not
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	additional cross sections.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	used critical depth for the water surface and continued on with the calculations.
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 100-yr
	This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Narning:	

Errors Warnings and Notes for Plan : Ex Start WSEL (Continued)

	<u> </u>								
	surface was used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 100-yr								
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water								
	surface was used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 100-yr								
Warning:	The flow through the culvert is supercritical. However, since there is flow over the road (weir								
	flow), the program cannot determine if the downstream cross section should be subcritical or								
	supercritical. The program used the downstream subcritical answer, even though it may not be								
	valid.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 100-yr Culv: Culv # 1								
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the								
	downstream cross section. The program used the solution with the least error.								
Note:	Culvert critical depth exceeds the height of the culvert.								
Note:	The flow in the culvert is entirely supercritical.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 100-yr								
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7								
	or greater than 1.4. This may indicate the need for additional cross sections.								
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.								
	This may indicate the need for additional cross sections.								
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water								
	surface was used.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 100-yr								
Warning:	The energy equation could not be balanced within the specified number of iterations. The program								
	used critical depth for the water surface and continued on with the calculations.								
Warning:	Divided flow computed for this cross-section.								
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7								
	or greater than 1.4. This may indicate the need for additional cross sections.								
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical								
	depth, the calculated water surface came back below critical depth. This indicates that there is not								
	a valid subcritical answer. The program defaulted to critical depth.								
Location:	River: W. Br. Sawmill Reach: I-55 RS: 1 Profile: 100-yr								
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.								

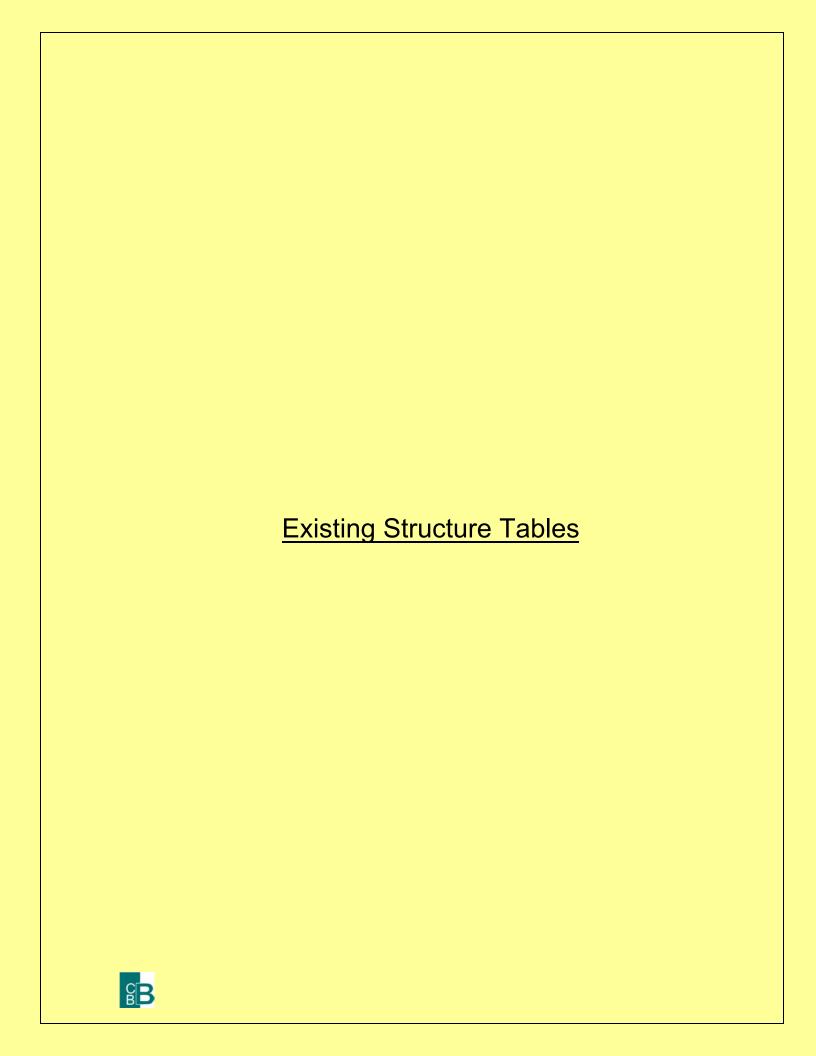


HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 500-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	500-yr	420.00	712.52	715.46	714.62	715.70	0.004997	4.13	107.94	55.22	0.47
I-55	11	500-yr	420.00	709.30	713.34	713.34	714.47	0.022752	8.53	49.26	22.27	1.01
I-55	10.5	500-yr	495.00	706.32	713.04	710.80	713.17	0.001326	3.38	185.57	73.63	0.27
I-55	10	500-yr	495.00	705.01	712.66	710.76	712.99	0.003312	6.06	171.94	66.29	0.41
I-55	9.1		Culvert									
I-55	9	500-yr	495.00	698.96	708.46	703.94	708.54	0.000417	2.19	234.59	49.75	0.16
I-55	8	500-yr	495.00	698.55	708.44		708.47	0.000193	1.85	487.41	100.34	0.12
I-55	7.5	500-yr	495.00	698.08	708.44		708.47	0.000022	0.36	489.22	95.90	0.02
I-55	7	500-yr	495.00	698.37	708.45		708.46	0.000062	1.10	566.48	102.88	0.07
I-55	6	500-yr	495.00	694.91	708.45	697.19	708.45	0.000006	0.42	1380.37	168.10	0.02
I-55	5.1		Culvert									
I-55	5	500-yr	495.00	688.56	698.53	692.71	698.70	0.000561	3.36	147.36	40.90	0.20
I-55	4	500-yr	495.00	687.10	698.60	690.17	698.60	0.000027	0.83	1836.32	1069.50	0.05
I-55	3.1		Culvert									
I-55	3	500-yr	495.00	680.61	685.98	684.62	686.69	0.005974	6.75	73.28	23.89	0.57
I-55	2	500-yr	495.00	679.12	680.25	680.25	680.56	0.092739	7.70	116.57	187.33	1.68
I-55	1	500-yr	495.00	677.67	680.24	678.35	680.25	0.000193	0.88	897.78	473.25	0.10
I-55	0.15	500-yr	1290.00	677.67	680.00	678.80	680.07	0.001993	2.65	782.59	471.10	0.32

HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 500-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	500-yr	715.70	715.46	0.24	1.14	0.09	13.09	294.39	112.51	55.22
I-55	11	500-yr	714.47	713.34	1.13	0.95	0.30		420.00		22.27
I-55	10.5	500-yr	713.17	713.04	0.14	0.12	0.06	96.78	336.45	61.77	73.63
I-55	10	500-yr	712.99	712.66	0.34			100.00	272.30	122.70	66.29
I-55	9.1		Culvert								
I-55	9	500-yr	708.54	708.46	0.07	0.05	0.02		491.95	3.05	49.75
I-55	8	500-yr	708.47	708.44	0.03	0.00	0.00	213.29	253.85	27.86	100.34
I-55	7.5	500-yr	708.47	708.44	0.02	0.00	0.00	0.29	53.91	440.79	95.90
I-55	7	500-yr	708.46	708.45	0.02	0.00	0.01	11.65	446.63	36.72	102.88
I-55	6	500-yr	708.45	708.45	0.00			13.09	468.62	13.29	168.10
I-55	5.1		Culvert								
I-55	5	500-yr	698.70	698.53	0.18	0.01	0.08		495.00		40.90
I-55	4	500-yr	698.60	698.60	0.01			41.38	265.85	187.77	1069.50
I-55	3.1		Culvert								
I-55	3	500-yr	686.69	685.98	0.71	5.92	0.20		495.00		23.89
I-55	2	500-yr	680.56	680.25	0.31	0.13	0.09		32.20	462.80	187.33
I-55	1	500-yr	680.25	680.24	0.01	0.17	0.01	6.29	281.66	207.05	473.25
I-55	0.15	500-yr	680.07	680.00	0.07			14.86	758.03	517.11	471.10



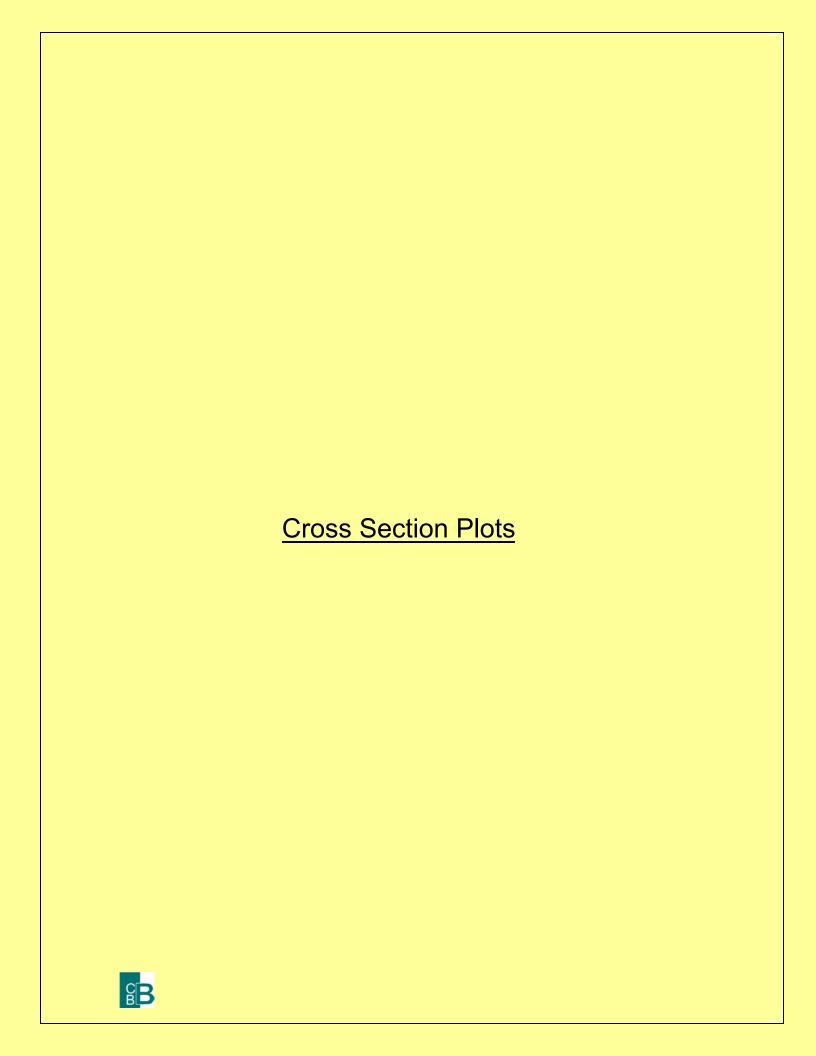
Errors Warnings and Notes for Plan: Ex Start WSEL

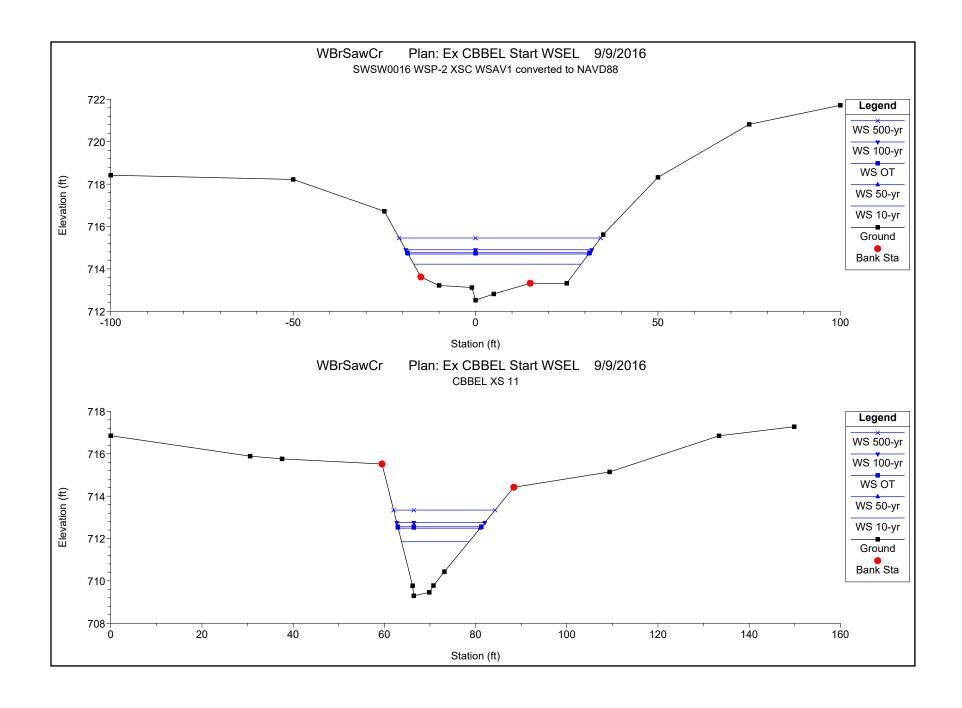
	or greater than 1.4. This may indicate the need for additional cross sections.
vvarring.	The conveyance rand (upstream conveyance divided by downstream conveyance) is less than 0.7
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 500-yr
	answer will be used.
INUIC.	the culvert inlet is submerged and the culvert nows full over part of all of its length. Therefore,
Note:	The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore,
Note: Note:	During the supercritical calculations a hydraulic jump occurred inside of the culvert.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 500-yr Culv: Cul Frontage Culvert critical depth exceeds the height of the culvert.
Loostica	surface was used. Biver: W. Pr. Soumill, Beach: L.55. BS: 5.1. Brofile: 500 yr. Cultr. Cult Frontage.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
Location:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 500-yr
Location:	or greater than 1.4. This may indicate the need for additional cross sections. Piver: W. Br. Sawmill, Beach: L55 PS: 6 Profile: 500 yr.
vvarrilliy.	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Warning:	
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 500-yr
Note:	Manning's n values were composited to a single value in the main channel.
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 500-yr
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 500-yr
	surface was used.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 500-yr
	surface was used.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 500-yr
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10.5 Profile: 500-yr
	a valid subcritical answer. The program defaulted to critical depth.
	depth, the calculated water surface came back below critical depth. This indicates that there is not
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	additional cross sections.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	used critical depth for the water surface and continued on with the calculations.
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 500-yr
	This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	additional cross sections.
vvarring.	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
Warning:	The value it is been done about and by many them O. F. ft. (O. 4.5 m). This many indicate the mond for

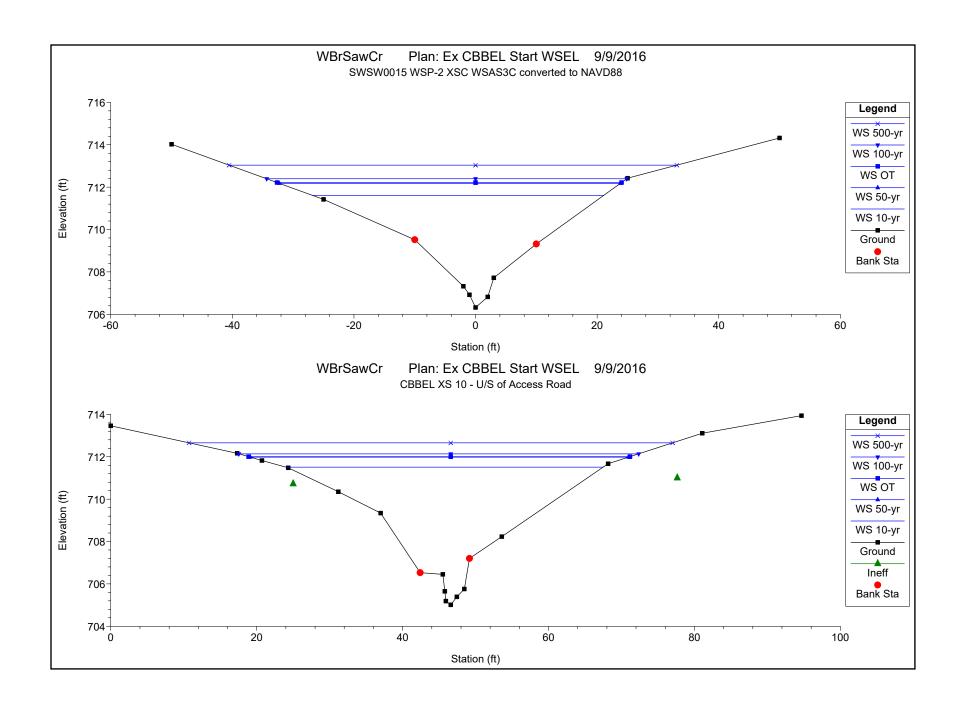
Errors Warnings and Notes for Plan : Ex Start WSEL (Continued)

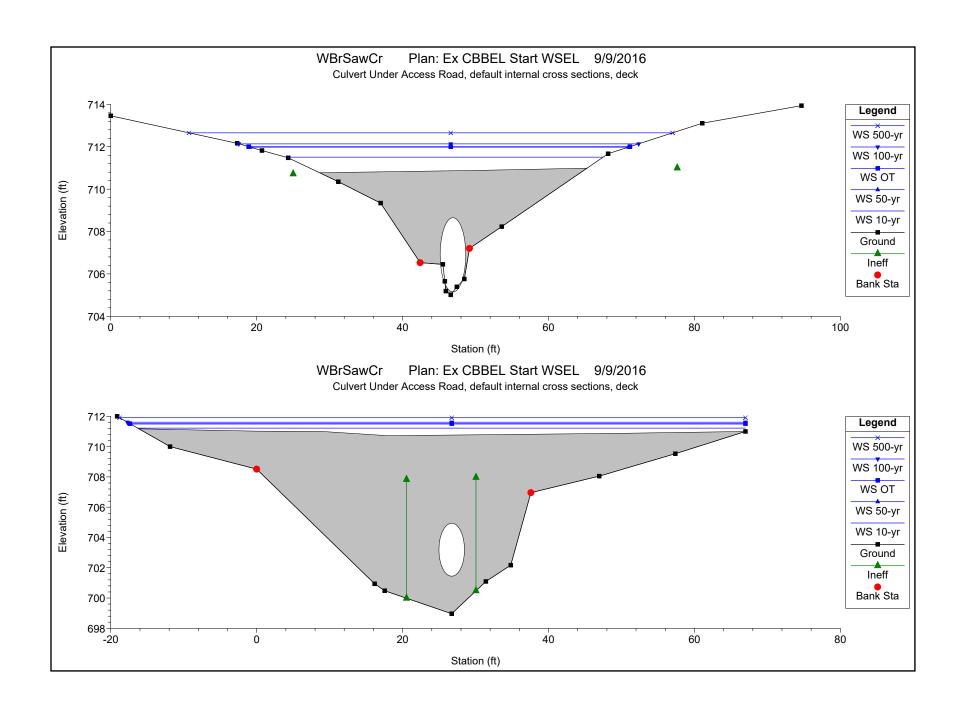
	surface was used.										
Location:	River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 500-yr										
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water										
	surface was used.										
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3.1 Profile: 500-yr Culv: Culv # 1										
Note:	Culvert critical depth exceeds the height of the culvert.										
Note:	During the supercritical calculations a hydraulic jump occurred inside of the culvert.										
Note:	The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore,										
	the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet										
	answer will be used.										
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 500-yr										
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7										
	or greater than 1.4. This may indicate the need for additional cross sections.										
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.										
	This may indicate the need for additional cross sections.										
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water										
	surface was used.										
Location:	River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 500-yr										
Warning:	The energy equation could not be balanced within the specified number of iterations. The program										
	used critical depth for the water surface and continued on with the calculations.										
Warning:	Divided flow computed for this cross-section.										
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7										
	or greater than 1.4. This may indicate the need for additional cross sections.										
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical										
	depth, the calculated water surface came back below critical depth. This indicates that there is not										
	a valid subcritical answer. The program defaulted to critical depth.										
Location:	River: W. Br. Sawmill Reach: I-55 RS: 1 Profile: 500-yr										
Warning:	The cross-section end points had to be extended vertically for the computed water surface.										
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.										

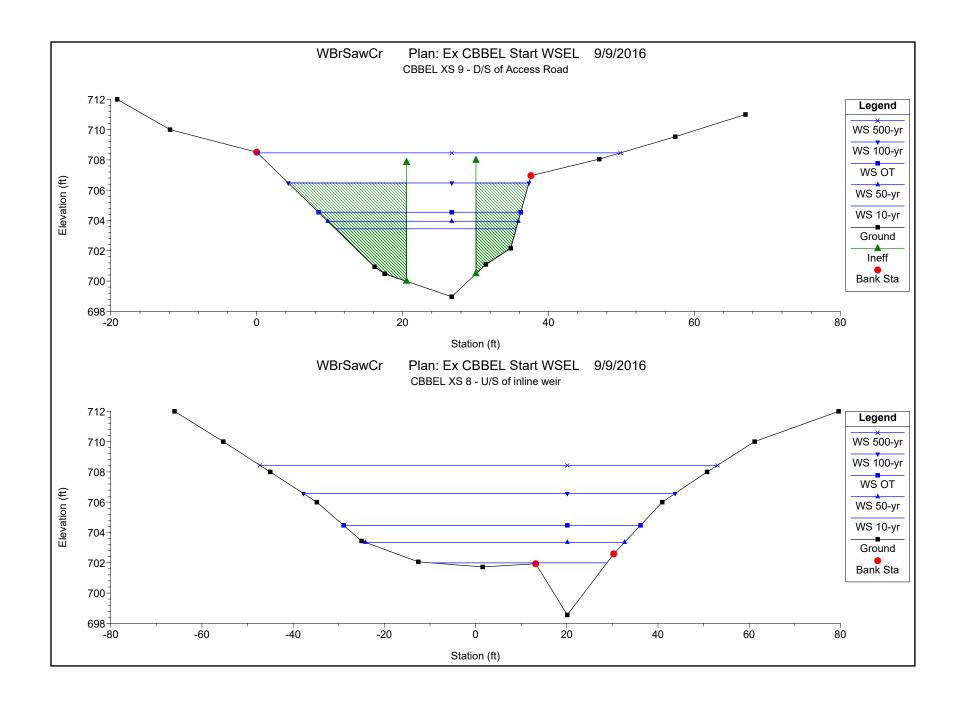
HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55

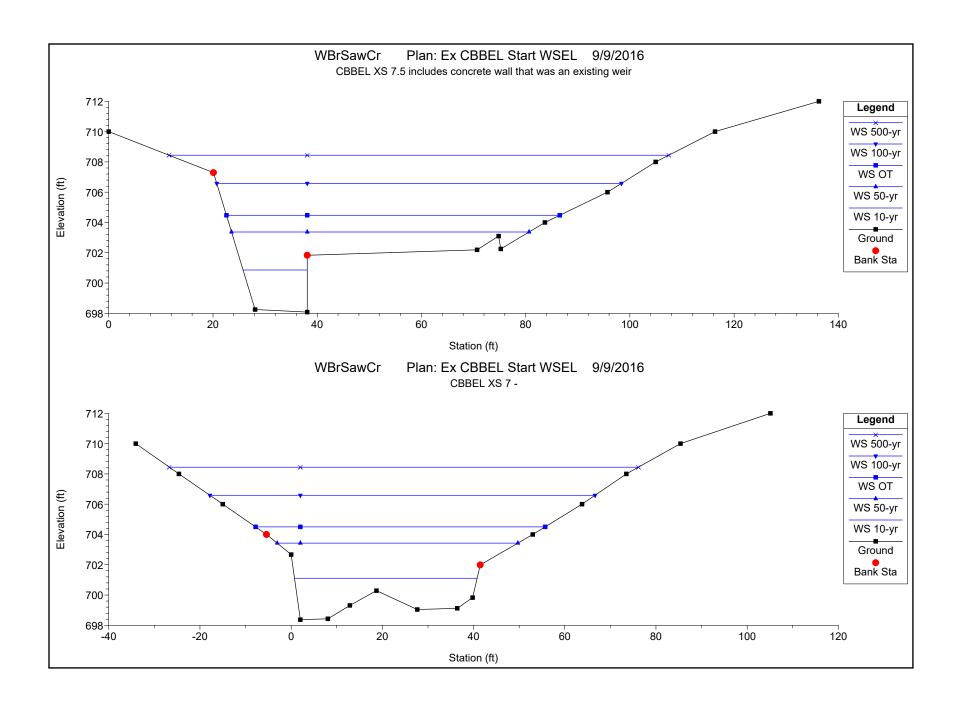

Reach		River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
				(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
I-55	9.1	Access Road	10-yr	711.60	711.51	711.60	711.06	710.78	111.04	66.96	8.06	11.54	14.74
I-55	9.1	Access Road	50-yr	712.17	711.98	712.17	711.44	710.78	118.84	170.40	8.04	12.35	15.01
I-55	9.1	Access Road	100-yr	712.37	712.14	712.35	712.37	710.78	115.79	229.21	5.66	12.03	12.03
I-55	9.1	Access Road	500-yr	712.99	712.66	712.92	712.99	710.78	101.56	393.44	4.19	10.56	10.56
I-55	9.1	Access Road	ОТ	712.20	712.00	712.20	711.46	710.78	119.32	182.68	7.46	12.40	15.02
I-55	5.1	Cul Frontage	10-yr	701.12	701.11	701.12	700.75	707.93	178.00		8.04	8.90	15.52
I-55	5.1	Cul Frontage	50-yr	703.44	703.42	705.67	703.44	707.93	290.00		5.81	14.50	14.50
I-55	5.1	Cul Frontage	100-yr	706.60	706.58	708.70	706.60	707.93	345.00		8.24	17.25	17.25
I-55	5.1	Cul Frontage	500-yr	708.45	708.45	708.56	708.45	707.93	378.39	115.20	9.92	18.92	18.92
I-55	5.1	Cul Frontage	ОТ	704.51	704.49	706.29	704.51	707.93	302.00		6.31	15.10	15.10
I-55	3.1	Culv # 1	10-yr	693.09	693.07	693.09	692.71	698.18	178.00		8.85	8.90	15.93
I-55	3.1	Culv # 1	50-yr	697.63	697.62	697.63	695.50	698.18	290.00		12.63	14.50	18.97
I-55	3.1	Culv # 1	100-yr	698.38	698.38	698.38	695.97	698.18	304.50	40.50	13.09	15.23	19.42
I-55	3.1	Culv # 1	500-yr	698.60	698.60	698.60	698.60	698.18	351.14	143.86	12.62	17.56	17.56
I-55	3.1	Culv # 1	ОТ	698.21	698.21	698.21	695.87	698.18	301.34	0.66	13.16	15.07	19.32

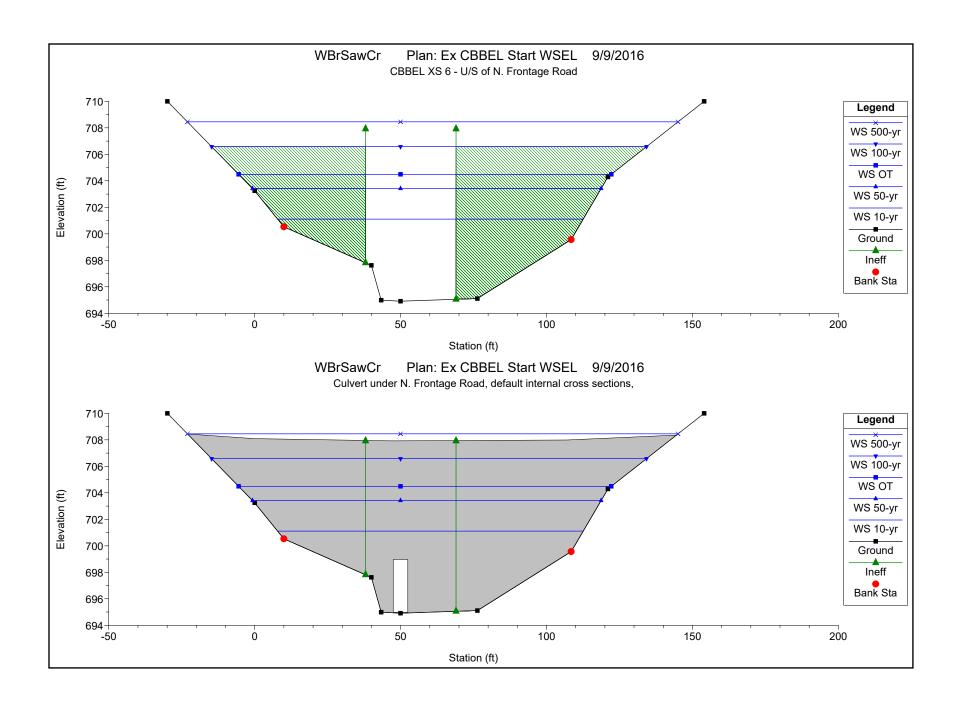

HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55

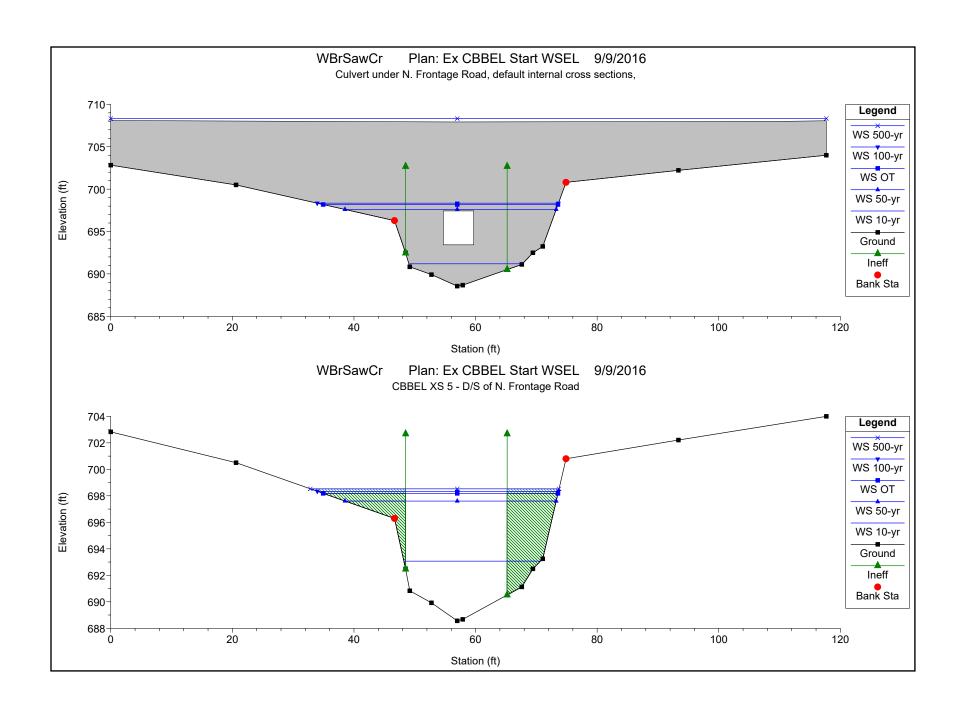

	Piani. Ex Stant V		VV. DI. Sawiiiii								
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	10.5	10-yr	711.67	711.61	0.06	0.05	0.01	17.98	145.94	14.08	47.88
I-55	10.5	50-yr	712.27	712.18	0.09	0.08	0.03	40.21	219.83	29.96	56.13
I-55	10.5	100-yr	712.50	712.39	0.11	0.10	0.04	52.70	253.77	38.53	59.23
I-55	10.5	500-yr	713.17	713.04	0.14	0.12	0.06	96.78	336.45	61.77	73.63
I-55	10.5	ОТ	712.31	712.22	0.10	0.09	0.03	42.62	227.73	31.65	56.67
I-55	10	10-yr	711.60	711.51	0.09			28.37	110.86	38.78	43.48
I-55	10	50-yr	712.16	711.98	0.18			50.96	172.31	66.73	51.83
I-55	10	100-yr	712.37	712.14	0.23			62.96	201.49	80.55	54.80
I-55	10	500-yr	712.99	712.66	0.34			100.00	272.30	122.70	66.29
I-55	10	ОТ	712.19	712.00	0.19			53.37	178.99	69.64	52.27
I-55	9.1		Culvert								
I-55	9	10-yr	703.81	703.45	0.36	1.08	0.09		178.00		24.76
	9	-				0.84					
I-55	9	50-yr	704.69	703.94	0.75		0.25		290.00		26.11
I-55	9	100-yr	706.90	706.48	0.43	0.10	0.20		345.00 491.95	2.05	32.97 49.75
I-55	9	500-yr OT	708.54	708.46	0.07	0.05				3.05	
I-55	9	01	705.17	704.54	0.63	0.34	0.27		302.00		27.72
I-55	8	10-yr	702.64	701.99	0.65	0.77	0.03	2.42	175.58		38.43
I-55	8	50-yr	703.60	703.35	0.25	0.06	0.04	64.44	224.98	0.58	56.86
I-55	8	100-yr	706.61	706.58	0.03	0.00	0.00	137.96	195.61	11.43	81.53
I-55	8	500-yr	708.47	708.44	0.03	0.00	0.00	213.29	253.85	27.86	100.34
I-55	8	ОТ	704.56	704.47	0.09	0.01	0.01	96.61	202.07	3.32	65.10
1.55	7	40	704.00	704.44	0.00	0.04	0.04		470.00		40.00
I-55	7	10-yr	701.20	701.11	0.09	0.04	0.04		178.00	4.00	40.06
I-55	7	50-yr	703.47	703.43	0.04	0.02	0.01	2.00	288.18	1.82	52.79
I-55		100-yr	706.60	706.59	0.02	0.01	0.00	3.00	325.42	16.58	84.48
I-55	7	500-yr	708.46	708.45	0.02	0.00	0.01	11.65	446.63	36.72	102.88
I-55	7	ОТ	704.53	704.50	0.03	0.01	0.01	0.06	296.33	5.60	63.50
I-55	6	10-yr	701.12	701.11	0.02				178.00		104.71
I-55	6	50-yr	703.44	703.42	0.02				290.00		119.46
I-55	6	100-yr	706.60	706.58	0.02				345.00		149.02

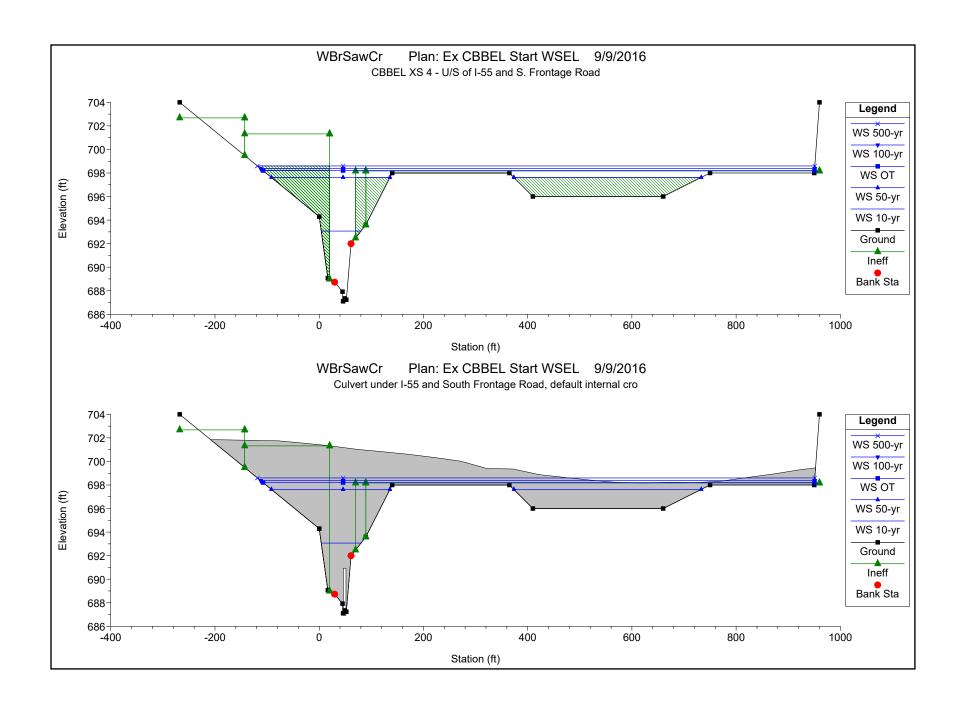

HEC-RAS Plan: Ex Start WSEL River: W. Br. Sawmill Reach: I-55 (Continued)

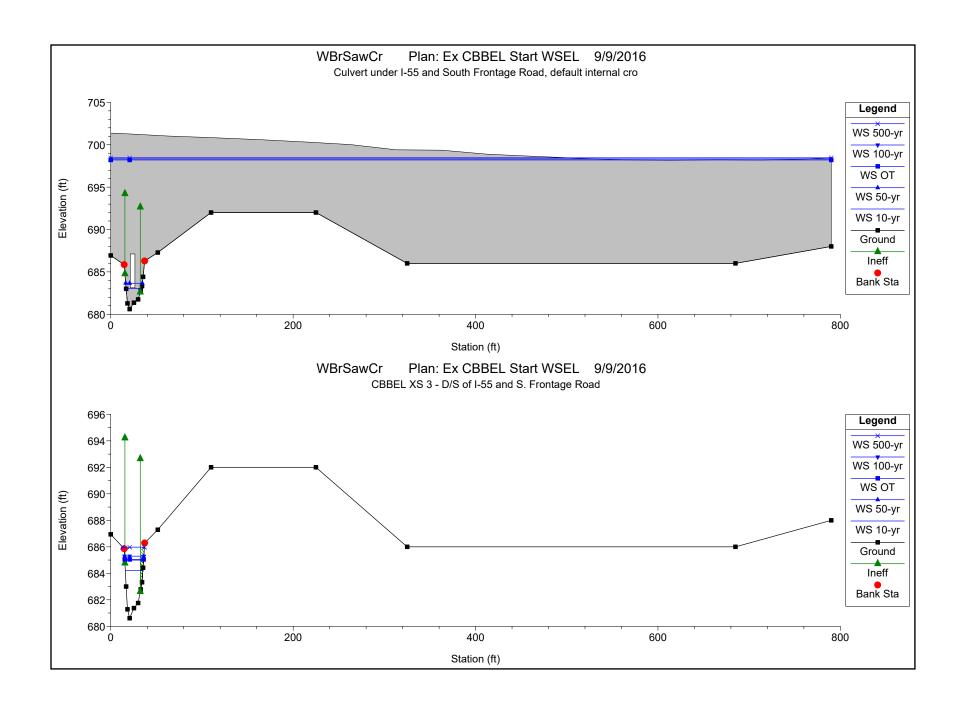

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	6	500-yr	708.45	708.45	0.00			13.09	468.62	13.29	168.10
I-55	6	ОТ	704.51	704.49	0.02				302.00		127.71
I-55	5.1		Culvert								
1-00	0.1		Odivert								
I-55	5	10-yr	693.22	693.07	0.16	0.07	0.07		178.00		22.46
I-55	5	50-yr	697.68	697.61	0.08	0.01	0.03		290.00		34.73
I-55	5	100-yr	698.43	698.34	0.09	0.01	0.04		345.00		39.68
I-55	5	500-yr	698.70	698.53	0.18	0.01	0.08		495.00		40.90
I-55	5	ОТ	698.26	698.19	0.07	0.01	0.03		302.00		38.62
I-55	4	10-yr	693.09	693.07	0.02			22.13	154.55	1.33	76.23
I-55	4	50-yr	697.63	697.62	0.01			36.86	238.49	14.65	586.97
I-55	4	100-yr	698.38	698.38	0.00			31.01	199.54	114.44	1063.10
I-55	4	500-yr	698.60	698.60	0.01			41.38	265.85	187.77	1069.50
I-55	4	ОТ	698.21	698.21	0.00			28.73	185.06	88.21	1058.24
I-55	3.1		Culvert								
I-55	3	10-yr	684.47	684.22	0.26	4.31	0.05		178.00		19.30
I-55	3	50-yr	685.40	684.99	0.41	5.01	0.09		290.00		20.61
I-55	3	100-yr	685.78	685.29	0.49	5.28	0.12		345.00		21.12
I-55	3	500-yr	686.69	685.98	0.71	5.92	0.20		495.00		23.89
I-55	3	ОТ	685.48	685.05	0.43	5.07	0.10		302.00		20.72
I-55	2	10-yr	680.11	679.96	0.15	0.13	0.04		15.03	162.97	171.82
I-55	2	50-yr	680.29	680.07	0.22	0.14	0.06		21.39	268.61	178.69
I-55	2	100-yr	680.37	680.12	0.25	0.12	0.07		24.30	320.70	181.14
I-55	2	500-yr	680.56	680.25	0.31	0.13	0.09		32.20	462.80	187.33
I-55	2	ОТ	680.31	680.08	0.22	0.11	0.07		21.93	280.07	179.47

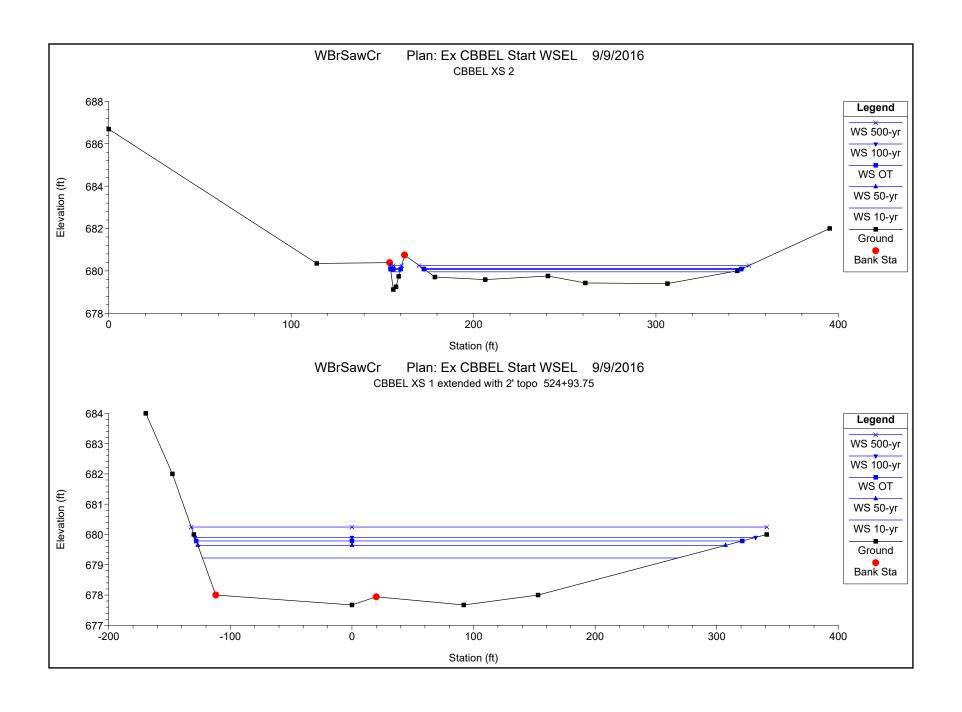


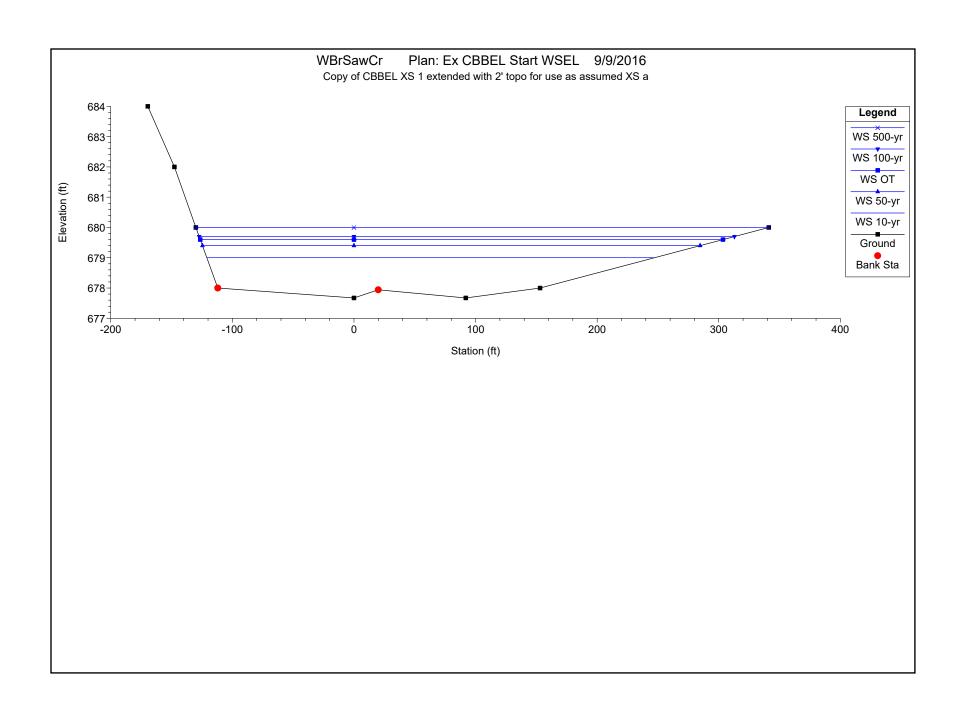


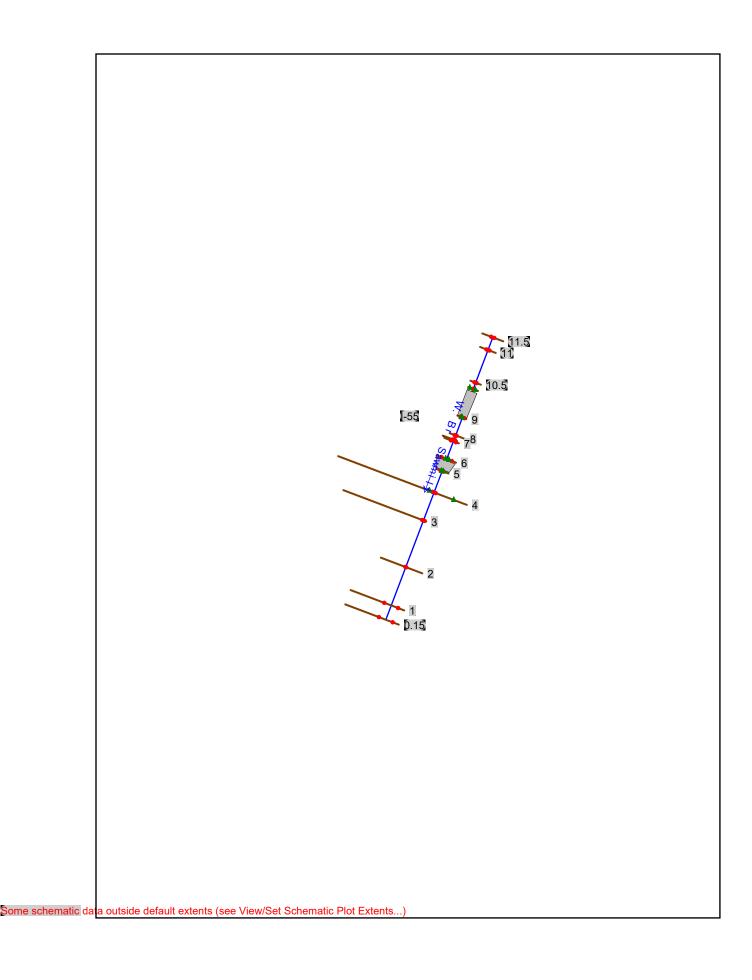












TAB C

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 13.C
	SECTION 13.C
	DESIGN NATURAL CONDITIONS
CB	

HEC-RAS HEC-RAS 5.0.1 April 2016 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XXXX			XX	XX	XX		XXXX
X	X	X	X	Х		Χ	X	X	Χ	X
X	X	X	Χ			Χ	X	X	Х	X
XXX	XXXX				XXX	XXXX		XXXXXX		XXXX
X	X		X			Χ	X	X	Х	X
X	X	X	X	Х		Χ	X	X	Х	X
X	Х	XXXXXX	XXXX			Х	X	X	Х	XXXXX

PROJECT DATA

Project Title: WBrSawCr Project File : WBrSawCr.prj

Run Date and Time: 8/25/2016 8:21:29 PM

Project in English units

Project Description:

2016 CBBEL model for I-55 over Sawmill Creek.

PLAN DATA

Plan Title: Natural CBBEL Start WSEL

Plan File: n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill Ck\WBrSawCr.p07

Geometry Title: Natural Start WSEL

 $\label{lem:condition} \mbox{Geometry File} : \mbox{$n:\10203.00001\Drain\Model\HEC-RAS} \mbox{$5.0.1\W$ BR Sawmill}$

Ck\WBrSawCr.g07

Flow Title : Ex CBBEL Start WSEL

Flow File : n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill

Ck\WBrSawCr.f03

Plan Description:

Natural conditions of I-55 over West Branch of Sawmill Creek. Created from 2012 CBBEL survey Cross sections, structures, and select FIS cross sections. Starting water surface and flows from FIS profile near confluence with Wards Creek. Proper ineffective cones and expansion/contraction coefficients used. All elevations presented in NAVD 88.

Plan Summary Information:

Number of: Cross Sections = 15 Multiple Openings = Culverts = 2 Inline Structures = Bridges = 0 Lateral Structures = 0 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20Maximum difference tolerance = 0.3Maximum difference tolerance = 0.001 Flow tolerance factor

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed Flow

FLOW DATA

Flow Title: Ex CBBEL Start WSEL

Flow File : n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill Ck\WBrSawCr.f03

Flow Data (cfs)

River	Reach	RS	10-yr	50-yr	100-yr
500-yr	OT				
W. Br. Sawr	mill I-55	11.5	149	245	290
420	257.17				
W. Br. Sawr	mill I-55	10.5	178	290	345
495	302				
W. Br. Sawr	mill I-55	0.15	478	780	923
1290	804				

Boundary Conditions

River	Re	ach Pi	rofile	Upstream	Downstream
W. Br. WS = 679	Sawmill I	-55	10-yr	Known WS = 711.1	Known
W. Br. = 679.4	Sawmill I	-55	50-yr	Known WS = 714.7	Known WS
W. Br. = 679.7	Sawmill I	-55	100-yr	Known WS = 714.8	Known WS
W. Br. WS = 680	Sawmill I	-55	500-yr	Known WS = 715.2	Known
	Sawmill I	-55	OT	Known WS = 714.8	Known WS

GEOMETRY DATA

Geometry Title: Natural Start WSEL

Geometry File: n:\Idot\110203.00001\Drain\Model\HEC-RAS 5.0.1\W BR Sawmill Ck\WBrSawCr.g07

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 11.5

INPUT

Description: SWSW0016 WSP-2 XSC WSAV1 converted to NAVD88

 Station Elevation Data
 num=
 14

 Sta
 Elev
 713.62
 -10
 713.22
 -15
 716.72
 -15
 713.62
 -10
 713.22
 -10
 713.22
 -10
 713.32
 -10
 713.32
 -10
 713.32
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 721.72
 -10
 7

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-100 .04 -15 .045 15 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -15 15 83 120 146 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 11

INPUT

Description: CBBEL XS 11

500+43.39

Station Elevation Data

tion Elevation Data num= 13 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 716.852 30.56 715.885 37.56 715.758 59.49 715.517 66.19 709.774 66.46 709.295 69.86 709.461 70.78 709.782 73.17 710.437 88.41 714.419 109.41 715.141 133.38 716.846 149.88 717.276

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 59.49 .042 88.41 .08

Right Coeff Contr. Expan. 290 .1 .3 Bank Sta: Left Right Lengths: Left Channel 59.49 88.41 255 312 255 312 290 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 10.5

INPUT

Description: SWSW0015 WSP-2 XSC WSAS3C converted to NAVD88

Station Elevation Data num= 11

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 -25
 711.42
 -10
 709.52
 -2
 707.32
 -1
 706.92

 2
 706.82
 3
 707.72
 10
 709.32
 25
 712.42
 Sta Elev Sta Elev -50 714.02 0 706.32 50 714.32

Manning's n Values num=

3 Sta n Val Sta n Val Sta n Val -50 .04 -10 .045 10 .04

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -10 10 61 61 61 .3 .5

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 10

Description: CBBEL XS 10 - U/S of Access Road

504+15.12

Station Elevation Data num= 18

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 3.3 712.16 20.72 711.82 24.32 711.48 31.2 710.35 36.98 709.34 42.41 706.53 45.51 706.45 45.79 705.65 45.93 705.19 46.6 705.01 47.43 705.39 48.46 705.76 49.17 707.2 53.6 708.23 68.17 711.67 81.08 713.11 94.67 713.94

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 42.41 .042 49.17 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 273 271 269 .3 .5

42.41 49.17
Ineffective Flow num= 2
Sta L Sta R Elev Permanent 0 25 710.72 F 77.64 94.67 711

CULVERT

RIVER: W. Br. Sawmill

RS: 9.1 REACH: I-55

Description: Culvert Under Access Road, default internal cross sections, deck

length = culvert length.

FHWA Chart # 1 - Concrete Pipe Culvert

```
Distance from Upstream XS = 24.57
Deck/Roadway Width = 240.41
 Upstream Deck/Roadway Coordinates
          num= 10
             Sta Hi Cord Lo Cord
                                                                              Sta Hi Cord Lo Cord
                                                                                                                                              Sta Hi Cord Lo Cord

    -75
    712.4
    0
    -50
    711.7
    0
    -32
    711.39

    -22
    711.23
    0
    0
    711.02
    0
    9
    711

    18
    710.72
    0
    50
    710.88
    0
    93
    711.18

    137
    711.14
    0

                                                                                                                                             -32 711.39 0
                                                                                                                                                                                              Ω
              137 711.14
 Upstream Bridge Cross Section Data
Station Elevation Data num= 18
        Sta Elev Sta
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 42.41 .042 49.17 .08
Bank Sta: Left Right Coeff Contr. Expan.
42.41 49.17 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
        0 25 710.72 F
77.64 94.67 711 F
 Downstream Deck/Roadway Coordinates
             Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -75 712.4 0 -50 711.7 0 -32 711.39 0 -22 711.23 0 0 711.02 0 9 711 0 18 710.72 0 50 710.88 0 93 711.18 0 137 711.14 0
         num= 10
             Sta Hi Cord Lo Cord
Downstream Bridge Cross Section Data
Manning's n Values num=
   Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-19.128 .08 0 .042 37.59 .08
= 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
weir flow = .95
 Upstream Embankment side slope
 Downstream Embankment side slope
 Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
 Energy head used in spillway design
 Spillway height used in design
Weir crest shape
                                                                                                                    = Broad Crested
Number of Culverts = 1
Culvert Name Shape Rise Access Road Circular 3.5
                                                                                           Span
```

FHWA Scale # 2 - Groove end entrance with headwall

Solution Criteria = Highest U.S. EG

Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss

Coef

24.57 240.41

.013 0 .013

.2

1

Upstream Elevation = 705.15

Centerline Station = 46.9

Downstream Elevation = 701.44

Centerline Station = 26.73

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55

TNPUT

Description: CBBEL XS 9 - D/S of Access Road

506+86.95

Station Elevation Data num= 12

 Sta
 Elev
 Sta
 Elev</t 26.73 698.96 31.41 701.09 34.83 702.17 37.59 706.96 46.95 708.05 57.38 709.53 67 711

Manning's n Values num=

3 Sta n Val Sta n Val Sta n Val Sta -19.128 .08 0 .042 37.59

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 0 37.59 162 171 140 .3 .5

0 37.59

Ineffective Flow num= 2

Sta L Sta R Elev Permanent
-19.128 20.54 707.83 F
30.06 67 707.97 F

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 8

Description: CBBEL XS 8 - U/S of inline weir

508.57.37

14 num= Station Elevation Data

 Sta
 Elev
 Sta
 Sta
 Elev
 Sta
 Elev
 Sta
 Sta Elev -25 703.44 30.3 702.58

 Manning's n Values
 num=
 3

 Sta n Val
 Sta n Val
 Sta n Val

 -66.02
 .08
 13.2
 .042
 30.3
 .08

Lengths: Left Channel Right Coeff Contr. Expan. Bank Sta: Left Right 13.2 30.3 6 42 22 . 1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 7.5

TNPUT

Description: CBBEL XS 7.5 includes concrete wall that was an existing weir

Station Elevation Data num= 13
Sta Elev Sta Elev Sta Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 70.68 702.19 74.81 703.1 75.22 702.25 83.69 704 95.7 706 104.94 708 116.33 710 136.27 712 Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val
0 .08 28.08 .042 38.09 .015 83.69 .08

Bank Sta: Left Right 20.09 38.09 Lengths: Left Channel Right Coeff Contr. Expan. 18 14 .1 3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 7

INPUT

Description: CBBEL XS 7 -

509+26.76

18 Station Elevation Data num= Sta Elev Sta -34.07

Manning's n Values num= Sta n Val Sta n Val Sta n Val -34.07 .08 -5.4 .042 41.48 .08

Bank Sta: Left Right Lengths: Left Channel -5.4 41.48 137 170 Left Channel Right Coeff Contr. Expan. 137 170 167 .3 .5 .3 .5

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 6

Description: CBBEL XS 6 - U/S of N. Frontage Road

510+97.00

49.97 694.91 76.32 695.11 108.45 699.56 121.05 704.29 154 710

Manning's n Values num=

Sta n Val Sta n Val Sta n Val -29.9 .08 10 .042 108.45 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

10 108.45 114.5 114.5 126 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent

-29.9 38 707.92 F

69 154 707.92 F

CULVERT

RIVER: W. Br. Sawmill

REACH: I-55 RS: 5.1

INPUT

Description: Culvert under N. Frontage Road, default internal cross sections, deck length = culvert length.

Distance from Upstream XS = Deck/Roadway Width = 89.8 Weir Coefficient = 2.7 Upstream Deck/Roadway Coordinates

```
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
-103.59 709.65 0 -53 708.9 0
47 707.92 0 107 707.99 0
                                                                Sta Hi Cord Lo Cord
                                                                0 708.09 0
                                                                313 710
Upstream Bridge Cross Section Data
Station Elevation Data num= 10

Sta Elev Sta Elev Sta Elev Sta Elev
-29.9 710 0 703.25 10 700.53 40 697.62
49.97 694.91 76.32 695.11 108.45 699.56 121.05 704.29
                                                                                43.33 694.99
154 710
Manning's n Values num=
                                             3
    Sta n Val Sta n Val Sta n Val
-29.9 .08 10 .042 108.45 .08
    -29.9
Sta L Sta R Elev Permane
-29.9 38 707.92 F
69 154 707.92 F
Downstream Deck/Roadway Coordinates
   num= 6
     Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
                                                                Sta Hi Cord Lo Cord

    -96
    709.65
    0
    -50
    708.9
    0

    56
    707.92
    0
    110
    707.99
    0

                                                                0 708.09 0
                                                                316 710
Downstream Bridge Cross Section Data
Station Elevation Data num= 14
   Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 0 702.83 20.61 700.5 46.67 696.29 48.49 692.49 49.18 690.83

      52.75
      689.92
      56.99
      688.56
      57.88
      688.67
      67.6
      691.12

      71.05
      693.24
      74.88
      700.8
      93.37
      702.21
      117.7
      704

                                                                                69.44 692.49
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 46.67 .042 74.88 .08
Bank Sta: Left Right Coeff Contr. Expan.
46.67 74.88 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
    0 48.5 702.68 F
65.2 117.7 702.68 F
                                            = 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
Upstream Embankment side slope
Downstream Embankment side slope
                                                           .95
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
                                                    = Broad Crested
Weir crest shape
Number of Culverts = 1
Cul Frontage
                   Shape Rise
Box 4
FHWA Chart # 8 - flared wingwalls
FHWA Scale # 1 - Wingwall flared 30 to 75 deg.
Solution Criteria = Highest U.S. EG
Culvert Upstrm Dist Length Top n Bottom n Depth Blocked Entrance Loss Coef Exit Loss
Coef
                                      .013 .013 0
                   13 89.8
                                                                                         . 4
Upstream Elevation = 694.97
            Centerline Station = 49.97
Downstream Elevation = 693.43
           Centerline Station = 57.2
```

CROSS SECTION

RIVER: W. Br. Sawmill

RS: 5 REACH: I-55

TNPUT

Description: CBBEL XS 5 - D/S of N. Frontage Road

512+11.70

Station Elevation Data num=

Sta Sta Elev Sta Elev Sta Elev 49.18 690.83 Elev Sta Elev 700.5 46.67 696.29 48.49 692.49 0 702.83 20.61 52.75 689.92 56.99 688.56 57.88 688.67 67.6 691.12 69.44 692.49 71.05 693.24 74.88 700.8 93.37 702.21 117.7 704

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .08 46.67 .042 74.88 .08

Lengths: Left Channel Right Coeff Contr. Expan.

46.67 74.88 325 204 173 .3 .5

Ineffective Flow num= 2

Sta L Sta R Elev Permanent
0 48.5 702 68

0 48.5 702.68 F 65.2 117.7 702.68 F

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 4

TNPUT

Description: CBBEL XS 4 - U/S of I-55 and S. Frontage Road

514+16.11

Station Elevation Data num= 17 Sta Elev Sta Elev 267.6 704 0 694.3 Sta Elev Sta Elev Sta Elev 0 694.3 16.63 689.071 29.66 688.728 44.72 687.921 -267.6 89.38 693.591 45.82 687.1 48.6 687.347 52.04 687.238 61.08 691.994 140 698 365 698 950 698 960 704 410 696 660 696 750 698

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-267.6 .08 29.66 .042 61.08 .08

Bank Sta: Left Right Lengths: Left Channel 29.66 61.08 321 267 Left Channel Right Coeff Contr. Expan. 321 267 267 .3 .5

Lo.00 61.08

Ineffective Flow num= 2

Stat. C1 = 7 Sta L Sta R Elev -267.6 -143 702.68 89.4 960 702.68 Elev Permanent F F

CROSS SECTION

RIVER: W. Br. Sawmill

RS: 3 REACH: I-55

TNPUT

Description: CBBEL XS 3 - D/S of I-55 and S. Frontage Road

516+83.31

17 Station Elevation Data num= Sta Elev Sta Elev 16.8 683 18.35 681.28 Sta Elev 20.71 680.61 Sta Elev Sta Elev 0 686.94 14.71 685.85 Sta Elev 25.41 681.37 30.02 681.76 32.85 682.782 34.34 683.32 35.4 684.42

110 692 225 692

325 686

37.2 686.29 51.54 687.29 685 686 790

Manning's n Values num=
Sta n Val Sta n Val
0 .08 14.71 .042 3 Sta n Val .08 37.2

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 14.71 37.2 364 445 326 .1

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 2

TNPUT

Description: CBBEL XS 2

521+27.64

Station Elevation Data

Ation Elevation Data num= 14
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 686.69 114 680.35 154 680.39 156 679.12 157.5 679.25
159 679.74 162.2 680.75 178.8 679.71 206.4 679.59 240.8 679.76
261.3 679.43 306.3 679.4 344.55 680 395.25 682

num= 3 Manning's n Values

Sta n Val Sta n Val Sta 0 .08 154 .042 162.2 Sta n Val .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 154 162.2 255 366 108 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS· 1

Description: CBBEL XS 1 extended with 2' topo 524+93.75

Station Elevation Data num= 9

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
-169.56 684 -147.66 682 -130 680 -112 678 0 677.67

20 677.94 92 677.67 153 678 341.1 680

Manning's n Values 3 num= Sta n Val Sta n Val Sta n Val -169.56 .08 -112 .042 20

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 500 136 350 -112 20 .1 .3

CROSS SECTION

RIVER: W. Br. Sawmill

REACH: I-55 RS: 0.15

Description: Copy of CBBEL XS 1 extended with 2' topo for use as assumed XS at confluence with Wards Creek. No vertical adjustment to XS 0.15

to be conservative.

Station Elevation Data num=

Sta Elev Sta Elev Sta Elev Sta -169.56 684 -147.66 682 -130 680 -112 20 677.94 92 677.67 153 678 341.1 Elev Sta Elev Sta Elev -112 678 0 677.67 680

Manning's n Values num=

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 69.56
 .08
 -112
 .042
 20
 .08

 -169.56

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -112 20 0 0 0 .1 .3

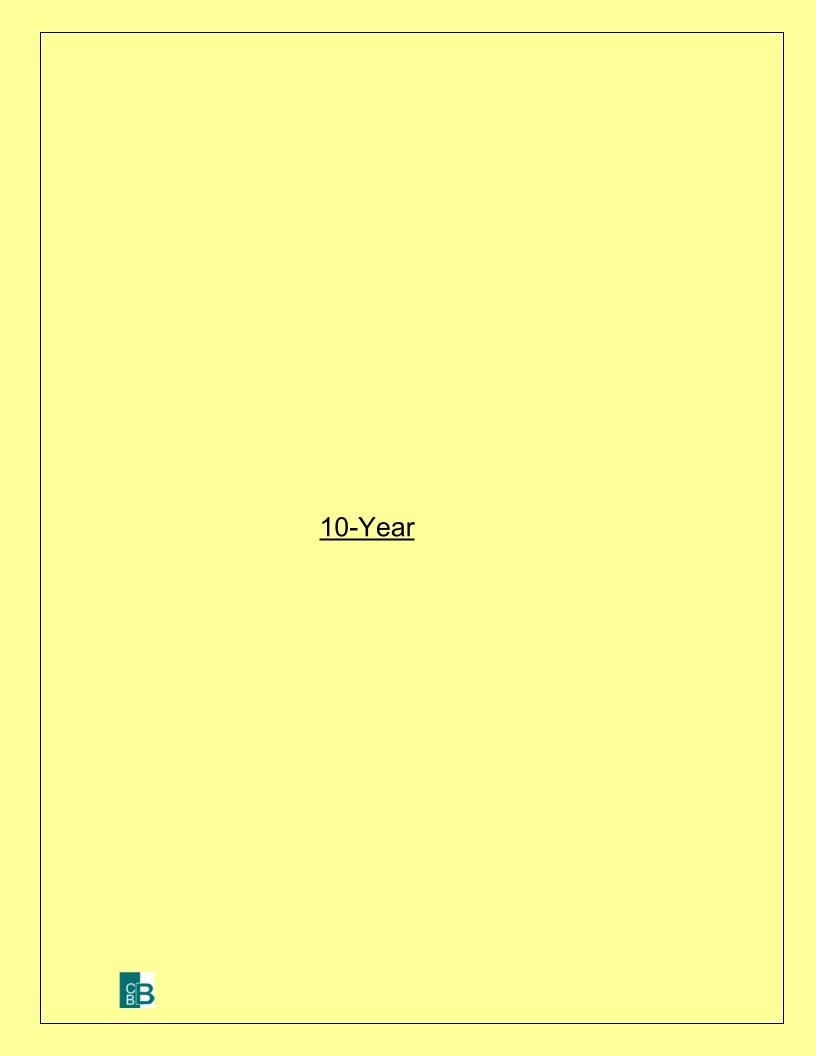
SUMMARY OF MANNING'S N VALUES

River:W. Br. Sawmill

Reach	River Sta.	n1	n2	n3	n4
I-55	11.5	.04	.045	.04	
I-55	11	.08	.042	.08	
I-55	10.5	.04	.045	.04	
I-55	10	.08	.042	.08	
I-55	9.1	Culvert			
I-55	9	.08	.042	.08	
I-55	8	.08	.042	.08	
I-55	7.5	.08	.042	.015	.08
I-55	7	.08	.042	.08	
I-55	6	.08	.042	.08	
I-55	5.1	Culvert			
I-55	5	.08	.042	.08	
I-55	4	.08	.042	.08	
I-55	3	.08	.042	.08	
I-55	2	.08	.042	.08	
I-55	1	.08	.042	.08	
I-55	0.15	.08	.042	.08	

SUMMARY OF REACH LENGTHS

River: W. Br. Sawmill

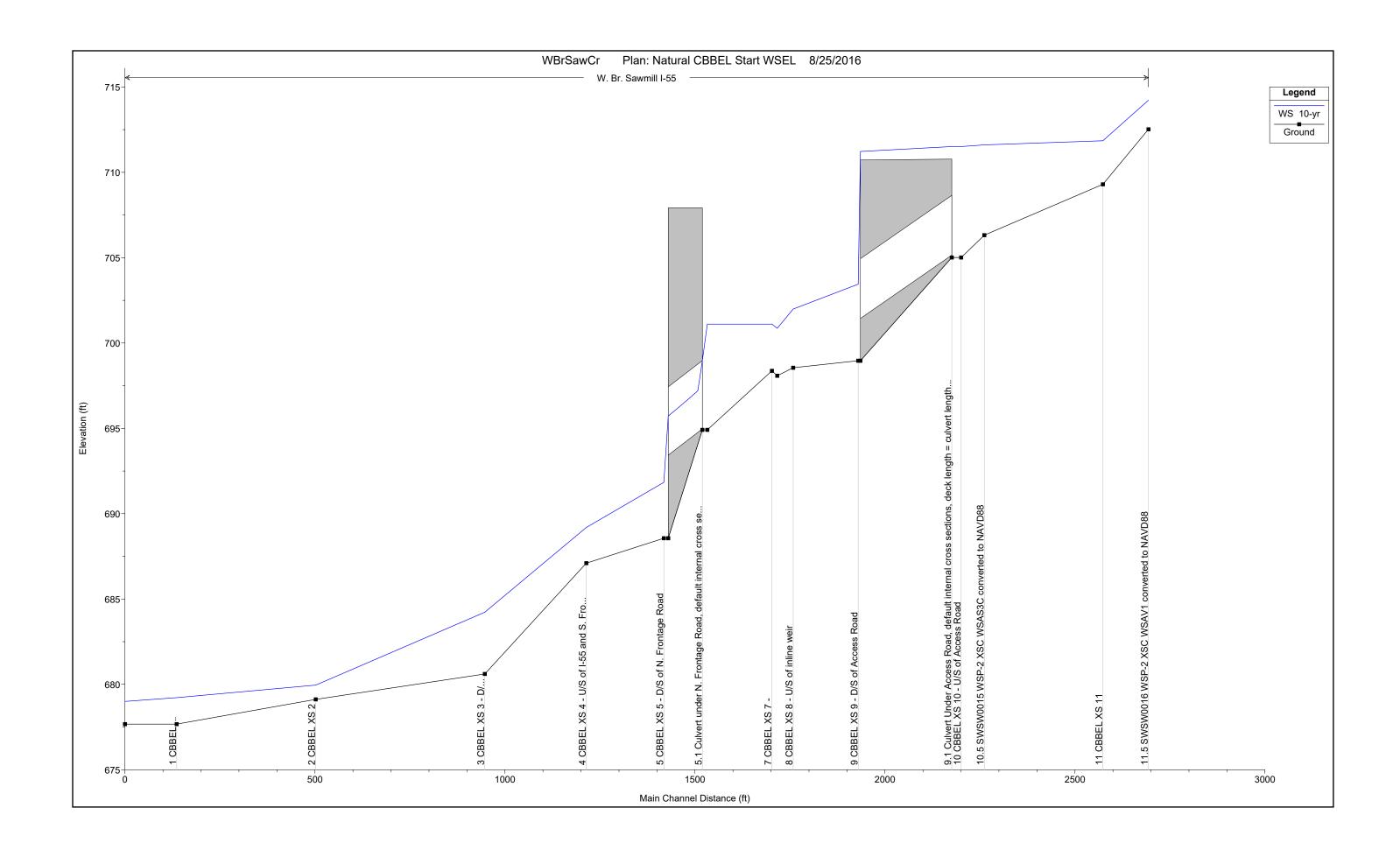

Reach	River Sta.	Left	Channel	Right
I-55	11.5	83	120	146
I-55	11	255	312	290
I-55	10.5	61	61	61
I-55	10	273	271	269
I-55	9.1	Culvert		
I-55	9	162	171	140
I-55	8	6	42	22
I-55	7.5	18	14	3
I-55	7	137	170	167
I-55	6	114.5	114.5	126
I-55	5.1	Culvert		
I-55	5	325	204	173
I-55	4	321	267	267
I-55	3	364	445	326
I-55	2	255	366	108
I-55	1	500	136	350
I-55	0.15	0	0	0

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

River: W. Br. Sawmill

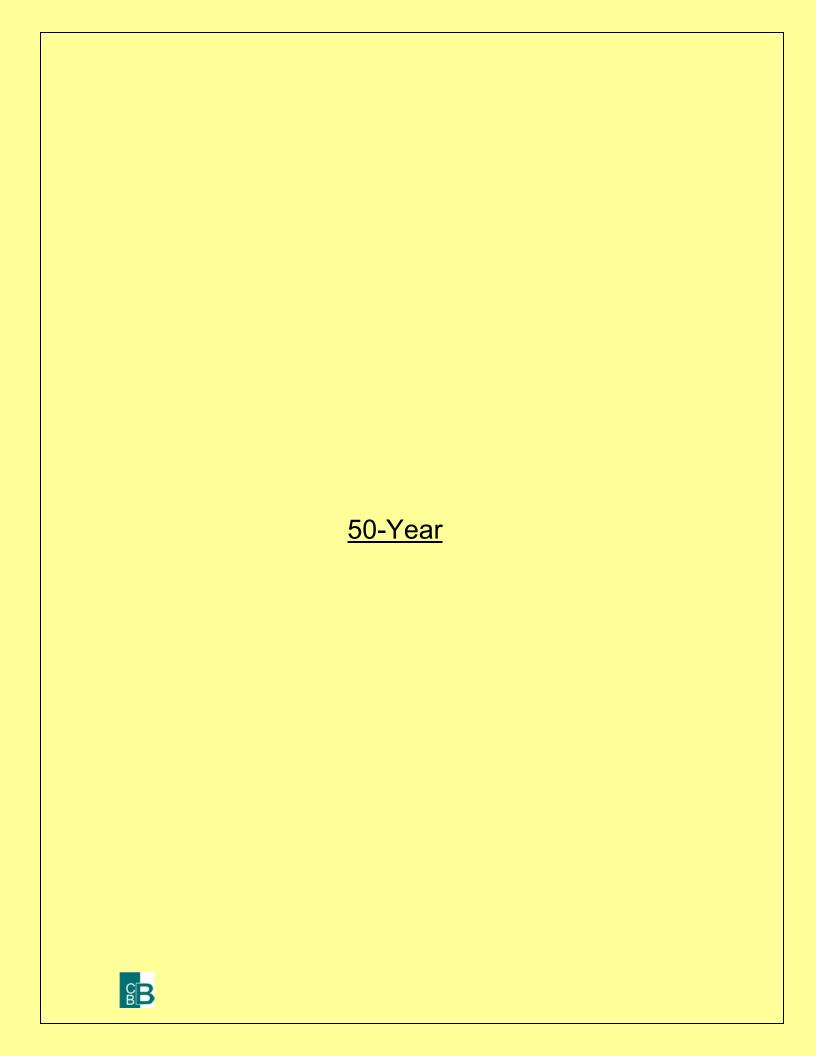
Reach	River	Sta. Contr.	Expan
I-55	11.5	.1	.3
I-55	11	.1	.3
I-55	10.5	.3	.5
I-55	10	.3	.5
I-55	9.1	Culvert	
I-55	9	.3	.5
I-55	8	.1	.3
I-55	7.5	.1	.3
I-55	7	.3	.5
I-55	6	.3	.5
I-55	5.1	Culvert	
I-55	5	.3	.5
I-55	4	.3	.5

I-55	3	.1	.3
I-55	2	.1	.3
I-55	1	.1	.3
I-55	0.15	.1	. 3



HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 10-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	10-yr	149.00	712.52	714.22	713.89	714.39	0.008935	3.39	45.64	45.88	0.56
I-55	11	10-yr	149.00	709.30	711.85	711.85	712.59	0.026100	6.92	21.54	14.80	1.01
I-55	10.5	10-yr	178.00	706.32	711.61	709.40	711.67	0.000769	2.06	100.93	47.88	0.19
I-55	10	10-yr	178.00	705.01	711.51	708.75	711.60	0.001032	2.98	109.87	43.48	0.22
I-55	9.1		Culvert									
I-55	9	10-yr	178.00	698.96	703.45	701.78	703.81	0.003195	4.81	37.02	24.76	0.43
I-55	8	10-yr	178.00	698.55	701.99	701.99	702.64	0.018188	6.49	30.47	38.43	0.87
I-55	7.5	10-yr	178.00	698.08	700.86	700.24	701.41	0.018540	5.93	30.00	12.32	0.67
I-55	7	10-yr	178.00	698.37	701.11		701.20	0.002287	2.43	73.38	40.06	0.32
I-55	6	10-yr	178.00	694.91	701.11	696.10	701.12	0.000077	0.99	180.27	104.71	0.07
I-55	5.1		Culvert									
I-55	5	10-yr	178.00	688.56	691.83	691.19	692.22	0.007799	4.99	35.67	19.79	0.60
I-55	4	10-yr	178.00	687.10	689.19	689.19	689.68	0.021726	5.68	34.38	39.51	0.93
I-55	3	10-yr	178.00	680.61	684.23	683.06	684.45	0.004137	3.81	46.69	19.31	0.43
I-55	2	10-yr	178.00	679.12	679.96	679.96	680.11	0.083200	6.09	62.56	171.82	1.53
I-55	1	10-yr	178.00	677.67	679.22	678.09	679.23	0.000185	0.60	447.37	390.96	0.09
I-55	0.15	10-yr	478.00	677.67	679.00	678.33	679.04	0.002455	1.95	363.01	368.05	0.32


HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 10-yr

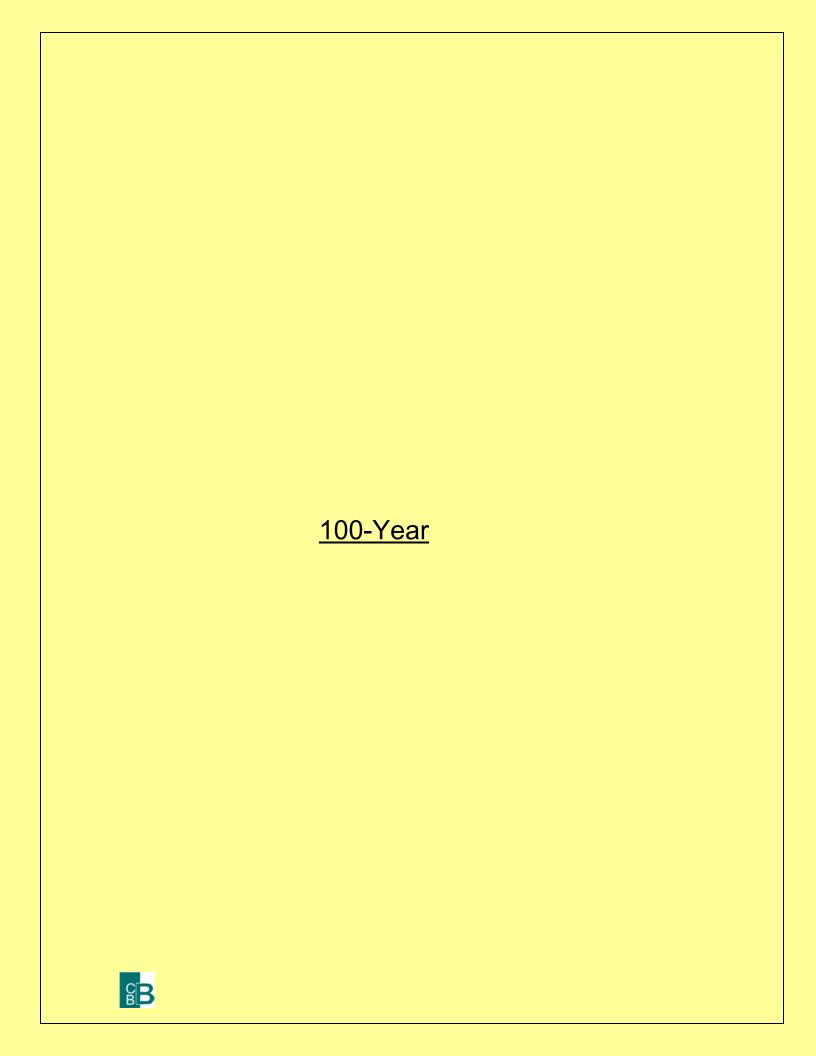
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	10-yr	714.39	714.22	0.17	1.75	0.06	0.90	116.14	31.95	45.88
I-55	11	10-yr	712.59	711.85	0.74	0.61	0.21		149.00		14.80
I-55	10.5	10-yr	711.67	711.61	0.06	0.05	0.01	17.98	145.94	14.08	47.88
I-55	10	10-yr	711.60	711.51	0.09			28.37	110.86	38.78	43.48
I-55	9.1		Culvert								
I-55	9	10-yr	703.81	703.45	0.36	1.08	0.09		178.00		24.76
I-55	8	10-yr	702.64	701.99	0.65	0.77	0.03	2.42	175.58		38.43
I-55	7.5	10-yr	701.41	700.86	0.55	0.07	0.14		178.00		12.32
I-55	7	10-yr	701.20	701.11	0.09	0.04	0.04		178.00		40.06
I-55	6	10-yr	701.12	701.11	0.02				178.00		104.71
I-55	5.1		Culvert								
I-55	5	10-yr	692.22	691.83	0.39	2.51	0.03		178.00		19.79
I-55	4	10-yr	689.68	689.19	0.49	2.15	0.13	4.55	173.45		39.51
I-55	3	10-yr	684.45	684.23	0.23	4.32	0.02		178.00		19.31
I-55	2	10-yr	680.11	679.96	0.15	0.13	0.04		15.03	162.97	171.82
I-55	1	10-yr	679.23	679.22	0.00	0.18	0.00	1.22	110.28	66.50	390.96
I-55	0.15	10-yr	679.04	679.00	0.04			2.60	300.41	174.99	368.05

	ings and Notes for Plan : Nat Start WSEL
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11.5 Profile: 10-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 10-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
ivote.	surface was used.
l	
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 10-yr
Warning:	The flow through the culvert is supercritical. However, since there is flow over the road (weir
	flow), the program cannot determine if the downstream cross section should be subcritical or
	supercritical. The program used the downstream subcritical answer, even though it may not be
	valid.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 10-yr Culv: Access Road
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the
	downstream cross section. The program used the solution with the least error.
Note:	The flow in the culvert is entirely supercritical.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 10-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
···ui···ig.	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
vvaiiiiiy.	
Noto:	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 10-yr

	· · · · ·
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 10-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Note:	During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 10-yr Culv: Cul Frontage
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the
	downstream cross section. The program used the solution with the least error.
Note:	The flow in the culvert is entirely supercritical.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 10-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy
	was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 10-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 10-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.

HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 50-yr

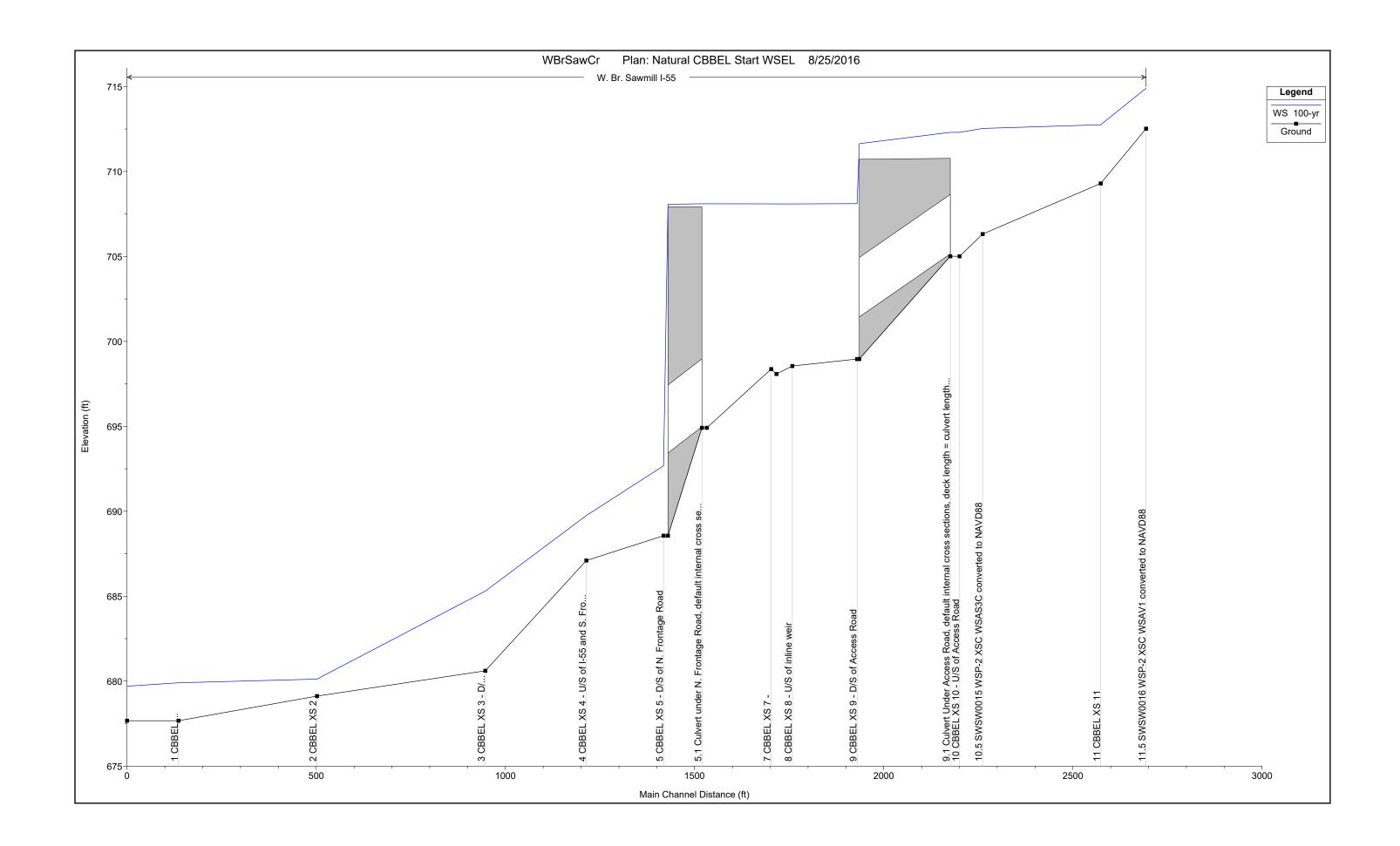
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	50-yr	245.00	712.52	714.70	714.18	714.91	0.006838	3.75	68.43	49.50	0.52
I-55	11	50-yr	245.00	709.30	712.49	712.49	713.40	0.024429	7.65	32.03	17.99	1.01
I-55	10.5	50-yr	290.00	706.32	712.19	709.98	712.28	0.001047	2.65	131.36	56.32	0.23
I-55	10	50-yr	290.00	705.01	712.00	709.55	712.17	0.001873	4.25	133.02	52.13	0.31
I-55	9.1		Culvert									
I-55	9	50-yr	290.00	698.96	705.60	702.63	705.99	0.001955	5.04	57.50	30.59	0.36
I-55	8	50-yr	290.00	698.55	705.65		705.69	0.000379	1.96	247.05	73.32	0.15
I-55	7.5	50-yr	290.00	698.08	705.66		705.69	0.000051	0.47	261.36	72.10	0.03
I-55	7	50-yr	290.00	698.37	705.67		705.68	0.000088	1.02	318.97	75.38	0.07
I-55	6	50-yr	290.00	694.91	705.66	696.53	705.67	0.000030	0.90	321.31	139.62	0.05
I-55	5.1		Culvert									
I-55	5	50-yr	290.00	688.56	692.42	691.80	693.06	0.009662	6.38	45.47	20.84	0.68
I-55	4	50-yr	290.00	687.10	689.59	689.59	690.23	0.020478	6.59	50.66	41.55	0.94
I-55	3	50-yr	290.00	680.61	684.99	683.66	685.33	0.004816	4.68	61.96	20.61	0.48
I-55	2	50-yr	290.00	679.12	680.07	680.07	680.29	0.094643	6.99	82.26	178.69	1.66
I-55	1	50-yr	290.00	677.67	679.64	678.19	679.65	0.000194	0.73	619.60	433.98	0.10
I-55	0.15	50-yr	780.00	677.67	679.40	678.53	679.46	0.002327	2.30	518.49	409.27	0.32


HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 50-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	50-yr	714.91	714.70	0.20	1.44	0.07	3.74	182.00	59.26	49.50
I-55	11	50-yr	713.40	712.49	0.91	0.79	0.25		245.00		17.99
I-55	10.5	50-yr	712.28	712.19	0.09	0.08	0.03	40.47	219.42	30.11	56.32
I-55	10	50-yr	712.17	712.00	0.18			51.15	172.02	66.83	52.13
I-55	9.1		Culvert								
I-55	9	50-yr	705.99	705.60	0.40	0.12	0.18		290.00		30.59
I-55	8	50-yr	705.69	705.65	0.04	0.00	0.00	108.66	174.50	6.83	73.32
I-55	7.5	50-yr	705.69	705.66	0.03	0.00	0.00		46.26	243.74	72.10
I-55	7	50-yr	705.68	705.67	0.02	0.01	0.00	1.01	278.99	10.00	75.38
I-55	6	50-yr	705.67	705.66	0.01				290.00		139.62
I-55	5.1		Culvert								
I-55	5	50-yr	693.06	692.42	0.63	2.82	0.00		290.00		20.84
I-55	4	50-yr	690.23	689.59	0.63	2.35	0.15	18.73	271.27		41.55
I-55	3	50-yr	685.33	684.99	0.34	5.00	0.04		290.00		20.61
I-55	2	50-yr	680.29	680.07	0.22	0.14	0.06		21.39	268.61	178.69
I-55	1	50-yr	679.65	679.64	0.01	0.18	0.01	2.73	174.68	112.59	433.98
I-55	0.15	50-yr	679.46	679.40	0.06			6.21	477.55	296.25	409.27

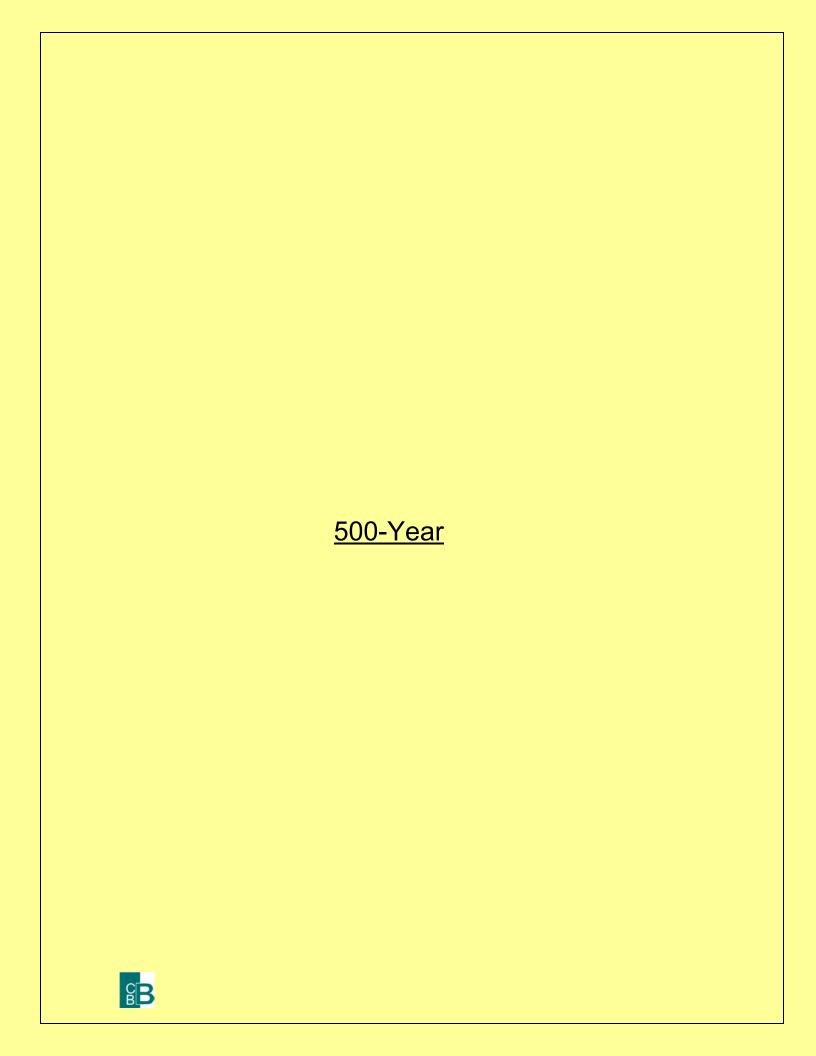
	ings and Notes for Plan : Nat Start WSEL
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11.5 Profile: 50-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 50-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9.1 Profile: 50-yr Culv: Access Road
Note:	During the supercritical calculations a hydraulic jump occurred inside of the culvert.
Note:	The culvert inlet is submerged and the culvert flows full over part or all of its length. Therefore,
1010.	the culvert inlet equations are not valid and the supercritical result has been discarded. The outlet
	answer will be used.
Location:	
	,
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
N1 - 4 -	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 50-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 50-yr
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 50-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 50-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Note:	During the supercritical calculations a hydraulic jump occurred at the outlet of (leaving) the culvert.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 50-yr Culv: Cul Frontage
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the
	downstream cross section. The program used the solution with the least error.
Note:	Culvert critical depth exceeds the height of the culvert.
Note:	The flow in the culvert is entirely supercritical.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 50-yr
Location.	Privot. W. Dr. Oawittiii Meacit. 1-00 170. 0 FTOIlle. 30-yi

Litolo Wall	ing and votes for hair. Nat Start WOLL (Continued)
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 50-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy
	was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 50-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 50-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.



HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 100-yr

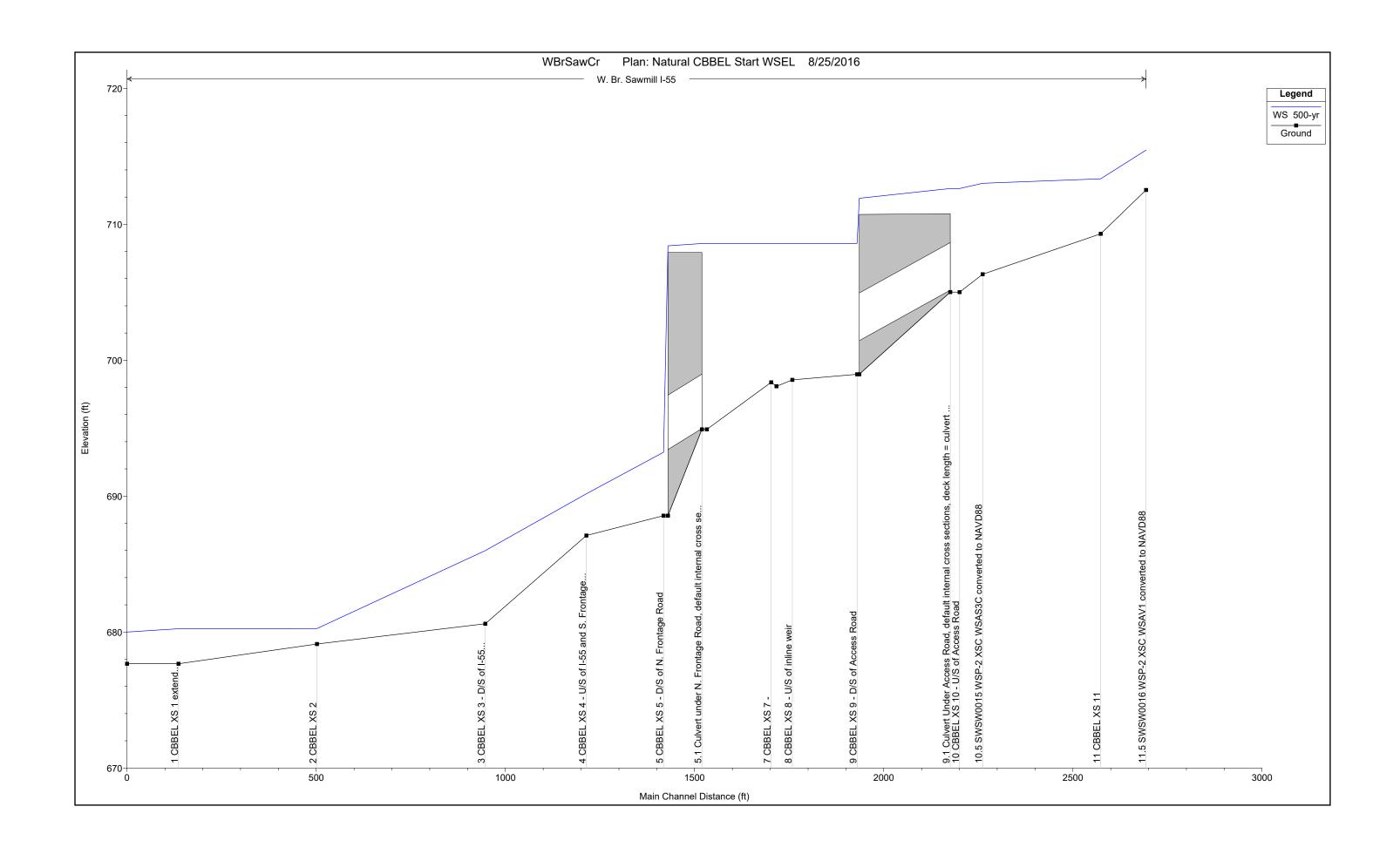
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	100-yr	290.00	712.52	714.90	714.31	715.12	0.006271	3.88	78.53	51.02	0.51
I-55	11	100-yr	290.00	709.30	712.75	712.75	713.71	0.023370	7.85	36.95	19.31	1.00
I-55	10.5	100-yr	345.00	706.32	712.53	710.25	712.63	0.001042	2.79	151.46	62.20	0.23
I-55	10	100-yr	345.00	705.01	712.31	709.95	712.51	0.002096	4.65	150.09	58.48	0.33
I-55	9.1		Culvert									
I-55	9	100-yr	345.00	698.96	708.11	703.00	708.15	0.000243	1.62	217.42	46.47	0.12
I-55	8	100-yr	345.00	698.55	708.09		708.11	0.000112	1.38	453.18	96.74	0.09
I-55	7.5	100-yr	345.00	698.08	708.09		708.11	0.000013	0.27	456.54	91.32	0.02
I-55	7	100-yr	345.00	698.37	708.09		708.10	0.000035	0.81	531.04	99.14	0.05
I-55	6	100-yr	345.00	694.91	708.10	696.74	708.10	0.000003	0.30	1321.65	164.50	0.02
I-55	5.1		Culvert									
I-55	5	100-yr	345.00	688.56	692.68	692.07	693.43	0.010231	6.95	49.65	21.44	0.71
I-55	4	100-yr	345.00	687.10	689.75	689.75	690.46	0.020678	7.01	57.25	42.35	0.96
I-55	3	100-yr	345.00	680.61	685.30	683.93	685.69	0.005143	5.05	68.33	21.13	0.49
I-55	2	100-yr	345.00	679.12	680.12	680.12	680.37	0.094961	7.23	91.80	181.14	1.67
I-55	1	100-yr	345.00	677.67	679.90	678.23	679.91	0.000168	0.75	737.35	461.10	0.09
I-55	0.15	100-yr	923.00	677.67	679.70	678.61	679.75	0.001746	2.24	645.90	440.19	0.29


HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 100-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	100-yr	715.12	714.90	0.22	1.34	0.07	5.64	211.83	72.53	51.02
I-55	11	100-yr	713.71	712.75	0.96	0.78	0.26		290.00		19.31
I-55	10.5	100-yr	712.63	712.53	0.10	0.09	0.03	56.06	249.80	39.14	62.20
I-55	10	100-yr	712.51	712.31	0.21			64.99	197.91	82.10	58.48
I-55	9.1		Culvert								
I-55	9	100-yr	708.15	708.11	0.04	0.03	0.01		343.88	1.12	46.47
I-55	8	100-yr	708.11	708.09	0.02	0.00	0.00	147.06	180.10	17.85	96.74
I-55	7.5	100-yr	708.11	708.09	0.01	0.00	0.00	0.09	38.50	306.42	91.32
I-55	7	100-yr	708.10	708.09	0.01	0.00	0.00	7.04	313.91	24.04	99.14
I-55	6	100-yr	708.10	708.10	0.00			8.51	327.88	8.61	164.50
I-55	5.1		Culvert								
I-55	5	100-yr	693.43	692.68	0.75	2.94	0.02		345.00		21.44
I-55	4	100-yr	690.46	689.75	0.71	2.46	0.16	26.60	318.40		42.35
I-55	3	100-yr	685.69	685.30	0.40	5.28	0.04		345.00		21.13
I-55	2	100-yr	680.37	680.12	0.25	0.12	0.07		24.30	320.70	181.14
I-55	1	100-yr	679.91	679.90	0.01	0.15	0.00	3.78	204.09	137.13	461.10
I-55	0.15	100-yr	679.75	679.70	0.05			9.02	553.68	360.30	440.19

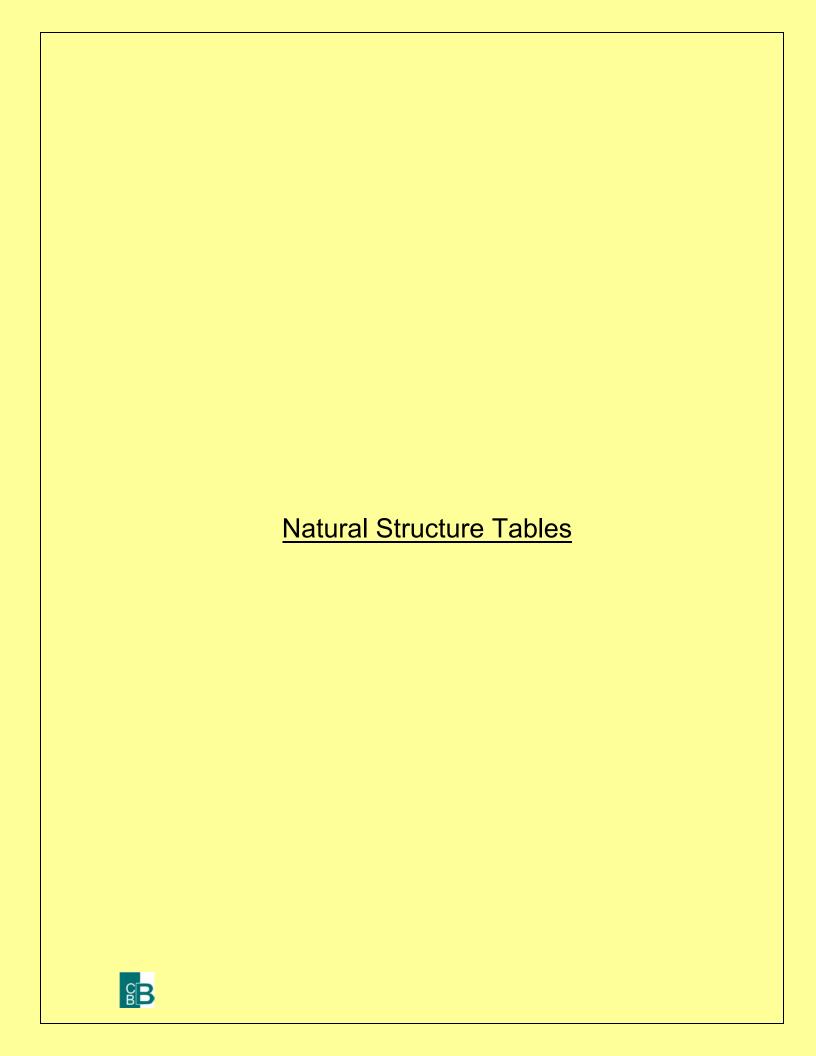
Location:	ings and Notes for Plan : Nat Start WSEL River: W. Br. Sawmill Reach: I-55 RS: 11.5 Profile: 100-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
rrannig.	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
rvairiiig.	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
rvarriirig.	This may indicate the need for additional cross sections.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 100-yr
	,
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
A/	used critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
A1	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Narning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 10.5 Profile: 100-yr
Varning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
ocation:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
ocation:	River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 100-yr
Narning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
rvarriirig.	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
ocation:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 100-yr
	·
Narning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
ocation:	or greater than 1.4. This may indicate the need for additional cross sections.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 100-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
ocation:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 100-yr
Warning:	The flow through the culvert is supercritical. However, since there is flow over the road (weir
	flow), the program cannot determine if the downstream cross section should be subcritical or
	supercritical. The program used the downstream subcritical answer, even though it may not be
	valid.
_ocation:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 100-yr Culv: Cul Frontage
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the
	downstream cross section. The program used the solution with the least error.
	During the culvert outlet control computations, the program could not balance the culvert/weir
Narning:	During the curvert outlet control computations, the program could not balance the curvertwell

LITOIS WAIT	ings and Notes for Fiant. National World (Continued)
Note:	Culvert critical depth exceeds the height of the culvert.
Note:	The flow in the culvert is entirely supercritical.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 100-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy
	was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 100-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 100-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.



HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 500-yr

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
I-55	11.5	500-yr	420.00	712.52	715.46	714.62	715.70	0.004997	4.13	107.94	55.22	0.47
I-55	11	500-yr	420.00	709.30	713.34	713.34	714.47	0.022752	8.53	49.26	22.27	1.01
I-55	10.5	500-yr	495.00	706.32	713.02	710.80	713.16	0.001350	3.40	184.13	73.19	0.27
I-55	10	500-yr	495.00	705.01	712.63	710.76	712.97	0.003381	6.11	170.13	65.67	0.42
I-55	9.1		Culvert									
I-55	9	500-yr	495.00	698.96	708.59	703.94	708.66	0.000389	2.14	241.11	51.41	0.15
I-55	8	500-yr	495.00	698.55	708.57		708.60	0.000180	1.81	500.66	101.70	0.11
I-55	7.5	500-yr	495.00	698.08	708.57		708.60	0.000020	0.36	501.90	97.62	0.02
I-55	7	500-yr	495.00	698.37	708.58		708.59	0.000058	1.08	580.02	104.27	0.06
I-55	6	500-yr	495.00	694.91	708.58	697.19	708.58	0.000005	0.41	1402.40	169.43	0.02
I-55	5.1		Culvert									
I-55	5	500-yr	495.00	688.56	693.23	692.71	694.33	0.011959	8.41	58.84	22.88	0.79
I-55	4	500-yr	495.00	687.10	690.17	690.17	691.03	0.019696	7.79	75.40	44.47	0.96
I-55	3	500-yr	495.00	680.61	685.99	684.56	686.54	0.005951	5.94	83.51	24.09	0.54
I-55	2	500-yr	495.00	679.12	680.25	680.25	680.56	0.092739	7.70	116.57	187.33	1.68
I-55	1	500-yr	495.00	677.67	680.24	678.35	680.25	0.000193	0.88	897.78	473.25	0.10
I-55	0.15	500-yr	1290.00	677.67	680.00	678.80	680.07	0.001993	2.65	782.59	471.10	0.32


HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 Profile: 500-yr

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	11.5	500-yr	715.70	715.46	0.24	1.14	0.09	13.09	294.39	112.51	55.22
I-55	11	500-yr	714.47	713.34	1.13	0.97	0.30		420.00		22.27
I-55	10.5	500-yr	713.16	713.02	0.14	0.12	0.06	96.18	337.35	61.47	73.19
I-55	10	500-yr	712.97	712.63	0.34			99.44	273.26	122.31	65.67
I-55	9.1		Culvert								
I-55	9	500-yr	708.66	708.59	0.07	0.04	0.02	0.00	491.34	3.66	51.41
I-55	8	500-yr	708.60	708.57	0.03	0.00	0.00	214.10	252.17	28.73	101.70
I-55	7.5	500-yr	708.60	708.57	0.02	0.00	0.00	0.38	53.45	441.17	97.62
I-55	7	500-yr	708.59	708.58	0.02	0.00	0.01	12.24	445.21	37.55	104.27
I-55	6	500-yr	708.58	708.58	0.00			13.42	467.94	13.64	169.43
I-55	5.1		Culvert								
I-55	5	500-yr	694.33	693.23	1.10	3.18	0.12		495.00		22.88
I-55	4	500-yr	691.03	690.17	0.86	2.67	0.15	51.44	443.56		44.47
I-55	3	500-yr	686.54	685.99	0.55	5.90	0.07	0.03	494.97		24.09
I-55	2	500-yr	680.56	680.25	0.31	0.13	0.09		32.20	462.80	187.33
I-55	1	500-yr	680.25	680.24	0.01	0.17	0.01	6.29	281.66	207.05	473.25
I-55	0.15	500-yr	680.07	680.00	0.07			14.86	758.03	517.11	471.10

⊨rrors Warn	ings and Notes for Plan : Nat Start WSEL
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11.5 Profile: 500-yr
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 11 Profile: 500-yr
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical
···uiiiiig.	depth, the calculated water surface came back below critical depth. This indicates that there is not
	a valid subcritical answer. The program defaulted to critical depth.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10.5 Profile: 500-yr
Warning:	
vvarriirig.	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
Lagation	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 10 Profile: 500-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 9 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 8 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7.5 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 7 Profile: 500-yr
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 6 Profile: 500-yr
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 500-yr
Warning:	The flow through the culvert is supercritical. However, since there is flow over the road (weir
	flow), the program cannot determine if the downstream cross section should be subcritical or
	supercritical. The program used the downstream subcritical answer, even though it may not be
	valid.
Location:	River: W. Br. Sawmill Reach: I-55 RS: 5.1 Profile: 500-yr Culv: Cul Frontage
Warning:	During the supercritical analysis, the program could not converge on a supercritical answer in the
····································	downstream cross section. The program used the solution with the least error.
Note:	Culvert critical depth exceeds the height of the culvert.
Note:	· · · · · · · · · · · · · · · · ·
NOIG.	The flow in the culvert is entirely supercritical.

River: W. Br. Sawmill Reach: I-55 RS: 5 Profile: 500-yr
The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
This may indicate the need for additional cross sections.
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
surface was used.
River: W. Br. Sawmill Reach: I-55 RS: 4 Profile: 500-yr
The energy equation could not be balanced within the specified number of iterations. The program
used critical depth for the water surface and continued on with the calculations.
The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
or greater than 1.4. This may indicate the need for additional cross sections.
The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
This may indicate the need for additional cross sections.
During the standard step iterations, when the assumed water surface was set equal to critical
depth, the calculated water surface came back below critical depth. This indicates that there is not
a valid subcritical answer. The program defaulted to critical depth.
Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy
was used.
River: W. Br. Sawmill Reach: I-55 RS: 3 Profile: 500-yr
The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
or greater than 1.4. This may indicate the need for additional cross sections.
The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
This may indicate the need for additional cross sections.
Hydraulic jump has occurred between this cross section and the previous upstream section.
River: W. Br. Sawmill Reach: I-55 RS: 2 Profile: 500-yr
The energy equation could not be balanced within the specified number of iterations. The program
used critical depth for the water surface and continued on with the calculations.
Divided flow computed for this cross-section.
The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
or greater than 1.4. This may indicate the need for additional cross sections.
During the standard step iterations, when the assumed water surface was set equal to critical
depth, the calculated water surface came back below critical depth. This indicates that there is not
a valid subcritical answer. The program defaulted to critical depth.
River: W. Br. Sawmill Reach: I-55 RS: 1 Profile: 500-yr
The cross-section end points had to be extended vertically for the computed water surface.

HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55

Reach		River Sta	Profile	E.G. US.	W.S. US.	E.G. IC	E.G. OC	Min El Weir Flow	Q Culv Group	Q Weir	Delta WS	Culv Vel US	Culv Vel DS
				(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(ft)	(ft/s)	(ft/s)
I-55	9.1	Access Road	10-yr	711.60	711.51	711.60	711.06	710.78	111.04	66.96	8.06	11.54	14.74
I-55	9.1	Access Road	50-yr	712.18	712.00	712.18	712.18	710.78	122.44	167.56	6.40	12.73	12.73
I-55	9.1	Access Road	100-yr	712.51	712.31	712.35	712.51	710.78	100.16	244.84	4.20	10.41	10.41
I-55	9.1	Access Road	500-yr	712.97	712.63	712.92	712.97	710.78	99.86	395.14	4.04	10.38	10.38
I-55	9.1	Access Road	ОТ	712.24	712.04	712.21	712.24	710.78	117.25	184.75	5.84	12.19	12.19
I-55	5.1	Cul Frontage	10-yr	701.12	701.11	701.12	700.75	707.93	178.00		9.28	8.90	15.52
I-55	5.1	Cul Frontage	50-yr	705.67	705.66	705.67	703.54	707.93	290.00		13.23	14.50	19.89
I-55	5.1	Cul Frontage	100-yr	708.10	708.10	708.10	705.20	707.93	334.79	12.90	15.42	16.74	22.06
I-55	5.1	Cul Frontage	500-yr	708.58	708.58	708.58	705.59	707.93	343.04	151.96	15.36	17.15	22.48
I-55	5.1	Cul Frontage	ОТ	706.29	706.28	706.29	703.93	707.93	302.00		13.79	15.10	20.45

HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	10.5	10-yr	711.67	711.61	0.06	0.05	0.01	17.98	145.94	14.08	47.88
I-55	10.5	50-yr	712.28	712.19	0.09	0.08	0.03	40.47	219.42	30.11	56.32
I-55	10.5	100-yr	712.63	712.53	0.10	0.09	0.03	56.06	249.80	39.14	62.20
I-55	10.5	500-yr	713.16	713.02	0.14	0.12	0.06	96.18	337.35	61.47	73.19
I-55	10.5	ОТ	712.34	712.25	0.09	0.09	0.03	43.25	226.73	32.02	57.12
I-55	10	10-yr	711.60	711.51	0.09			28.37	110.86	38.78	43.48
I-55	10	50-yr	712.17	712.00	0.18			51.15	172.02	66.83	52.13
I-55	10	100-yr	712.51	712.31	0.21			64.99	197.91	82.10	58.48
I-55	10	500-yr	712.97	712.63	0.34			99.44	273.26	122.31	65.67
I-55	10	ОТ	712.23	712.04	0.19			53.84	178.29	69.87	52.97
I-55	9.1		Culvert								
I-55	9	10-yr	703.81	703.45	0.36	1.08	0.09		178.00		24.76
I-55	9	50-yr	705.99	705.60	0.40	0.12	0.18		290.00		30.59
I-55	9	100-yr	708.15	708.11	0.04	0.03	0.01		343.88	1.12	46.47
I-55	9	500-yr	708.66	708.59	0.07	0.04	0.02	0.00	491.34	3.66	51.41
I-55	9	ОТ	706.55	706.20	0.35	0.09	0.16		302.00		32.22
I-55	8	10-yr	702.64	701.99	0.65	0.77	0.03	2.42	175.58		38.43
I-55	8	50-yr	705.69	705.65	0.04	0.00	0.00	108.66	174.50	6.83	73.32
I-55	8	100-yr	708.11	708.09	0.02	0.00	0.00	147.06	180.10	17.85	96.74
I-55	8	500-yr	708.60	708.57	0.03	0.00	0.00	214.10	252.17	28.73	101.70
I-55	8	OT OT	706.30	706.27	0.03	0.00	0.00	118.63	174.32	9.05	78.46
I-55	7	10-yr	701.20	701.11	0.09	0.04	0.04		178.00		40.06
I-55	7	50-yr	705.68	705.67	0.02	0.01	0.00	1.01	278.99	10.00	75.38
I-55	7	100-yr	708.10	708.09	0.01	0.00	0.00	7.04	313.91	24.04	99.14
I-55	7	500-yr	708.59	708.58	0.02	0.00	0.01	12.24	445.21	37.55	104.27
I-55	7	ОТ	706.29	706.28	0.01	0.01	0.00	2.04	286.82	13.14	81.51
I-55	6	10-yr	701.12	701.11	0.02				178.00		104.71
I-55	6	50-yr	705.67	705.66	0.01				290.00		139.62
I-55	6	100-yr	708.10	708.10	0.00			8.51	327.88	8.61	164.50

HEC-RAS Plan: Nat Start WSEL River: W. Br. Sawmill Reach: I-55 (Continued)

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
I-55	6	500-yr	708.58	708.58	0.00			13.42	467.94	13.64	169.43
I-55	6	ОТ	706.29	706.28	0.01				302.00		145.91
I-55	5.1		Culvert								
I-55	5	10-yr	692.22	691.83	0.39	2.51	0.03		178.00		19.79
I-55	5	50-yr	693.06	692.42	0.63	2.82	0.00		290.00		20.84
I-55	5	100-yr	693.43	692.68	0.75	2.94	0.02		345.00		21.44
I-55	5	500-yr	694.33	693.23	1.10	3.18	0.12		495.00		22.88
I-55	5	ОТ	693.14	692.48	0.66	2.86	0.00		302.00		20.94
I-55	4	10-yr	689.68	689.19	0.49	2.15	0.13	4.55	173.45		39.51
I-55	4	50-yr	690.23	689.59	0.63	2.35	0.15	18.73	271.27		41.55
I-55	4	100-yr	690.46	689.75	0.71	2.46	0.16	26.60	318.40		42.35
I-55	4	500-yr	691.03	690.17	0.86	2.67	0.15	51.44	443.56		44.47
I-55	4	ОТ	690.28	689.63	0.65	2.38	0.15	20.39	281.61		41.73

TAB D

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 13.D
	PROPOSED CONDITIONS
C B	

PROPOSED ANALYSIS

There are no proposed modifications to the existing culvert. Please refer to the existing conditions analysis in Section 13 C .

TAB 14

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 14
	SCOUR ANALYSIS
_	
BB	

SCOUR ANALYSIS

Scour analysis is not required for culverts.

TAB 15

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 15
	RIPRAP SIZING
CB	

RIPRAP SIZING

There appear to be scour holes present at the ends of the I-55 culvert. Proper scour countermeasures including riprap apron should be considered.

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek **SECTION 16** FLOODWAY PERMIT SUMMARY FORM RELATED EXHIBITS AND FILL CALCULATIONS

FLOODWAY PERMIT SUMMARY FORM RELATED EXHIBITS AND FILL CALCULATIONS

There is no regulatory floodway present and the drainage area is less than 1 square mile, therefore there is no permit summary form required.

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 17
	<u>OLOTION 17</u>
	COMPENSATORY STORAGE
S B	

COMPENSATORY STORAGE

There is no regulatory floodway present and the drainage area is less than 1 square mile, therefore there is no compensatory storage required.

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek **SECTION 18 SURVEY NOTES**

Questions concerning the VERTCON process may be mailed to NGS

Latitude: 41 43 59

Longitude: 87 57 00

NGVD 29 height:

Datum shift(NAVD 88 minus NGVD 29): -0.086 meter ₹ 0.28 Feet

	pc 138	12/05/12
	br 120	04/14 50 7WMUS
110503		1
FILE ZOIZIZOS DW	76/4-1-man	00 - 2196
TC1435 1	35 1436	CHEW 2083
1844353 8035	184458	0.1804
708.0 1080031.0499	1080012	,4682
712.0 710, 2239	709.	1387
HR 5,11 TE CP 1435	0360	P 1436
4 2000 E CP 1436	CHEC	K SH87 2083
1844580.1804	1.8016	1580,2345
1080012,4682		SO12.46 77
Charles (1990) 1 (199		709,0876
7821.20	The second section of the section of the section of the second section of the section of t	7
	BE GH	ECK SHOT 2145
		1 5 8 0 8 2 N
		0012,4805
	2	7090653
NS 5.06	010	
4126.00 Te cp 1436		00 1435
KNOWN & CP 1435	THE RESIDENCE AND ADDRESS OF THE PERSON NAMED IN	ECK SHOT 2146
184 4353,8035		4353.7885
1080031.0499	108	0031,043)
710.2289	Committee committee of the committee of	710.2852

	B? CH	ACK 21-10: 512P
	18.	14353.7856
	108	10031,0306
the same of the sa	Michigan Committee (1970) and the committee of the commit	710,2945

	FB 162 PF	146 11/00/12 TW/JH	FB (62 PG 147	M/or/12 Tw/JH
	1 \$ 55 Tan w	CONTROL ON 1	110203 ISS STREAM #1 516 18 10 11 10 7 Tm HZ BASER CF 211216	Closay So
压 1:314	1344559,196 1082004.674 1082,144		18+5224.134 1083444.575 691.071	
	(Here Oct 274. 184	1 412 527	How 43 (250) the 21,03 NOT 2500 My	CHOULOO34 1845886, 396 1084869, 029
	108 3444. 575	5 % 400 277	# 0045 /950/127.09 No. 25 10 PES 0034-0073	11/08/12
	18 55453.469 11 5 1219.778 668.946	1101219, 707 1101219, 707 1068,841 17/7 GAGE 2.84 CHOW 0028	111,420 BASG & CY 30/3/6 184 5224.184 1083444.575	500 745 First 2012/108700 PRS 74-99 -600-
	CHENC C CF 201233 1855078,295 1164267,027	1855678.224	L91,071: CHouce cpzol217	1845886, 405
	Cforc (2 cp 201211 184 2381.058	143.762 10092400033 CHOWN 1058 1842381.006	1084869.047	690, 953
	10775.85,312 715.871	1077 8 85.327 715.911	VIA Prest	

		F3162 P4149	Works
FB162 16 148	1/08/12	ESS STREAM #1	TWA IN
110203 ISS STREET The CO	sour 450 110203		
Fire 2012 1108 TW	42 5. 23 42 81 Ha 6.0	T @ 4 722 BS CP 721 1843775.2688 1843654.4	CHEZU 855
5.01 7 8487 184001 0589 18426	77.0780	1077482.0939 1077456.00	651,27456,0279
1617 1678845.0846 1078797.4363 1.67	5797.434	712.1504 714.819	714 8045
3.82 696.3738	96 6297 40095		04000 0785 1843654,5663
	3677,0566		107 7456, 0576
	7994286		714.8162
472	1.6298		FNST STATE
		20/2 1/12 Th Prs 490-499,	786 - 1008, 200 - 0 64
	1/07/12 12 1.7.26	BASEC 201216	
HI = 345 @ 201216	164	184 5224,184	
1845224.184		1083444.575	20
1083444.575 TER 691.07 97/7 400P	3.2	691.97 9 8/8 CHEYE B C 701217 9 8/8	CHOW LODG
CHOIL @ CP 201217 CHOICE	86.445	184 5886 424	184 5886.453
	169,000	108 4869.042	4901757
471.068	26/ J. Harris	691.068	
	Language of the second of the second	82 BFE 8f BFE	
Hn 13.04 1711 \$ 465 AND			
HR 13-17 NOT 1711 \$ 465 HR 9.24 NOT 13.11 \$ 446 \$1680 HR 5/94 NOT 9.04 \$ 708 14/21, \$ NOT 35.10			
# 108 1/2/21 13 NOT 25.10			v
pas gir3	1		

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
SECTION 19
ESTIMATED WATER SURFACE ELEVATION (EWSE) DATA
E B

Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek

EWSE Data

Date of survey: November, 2012

Existing water surface elevation = 687.22

Streambed elevation = 687.10 Top of bank elevation = 698.00

There is no gaging station data at or near the I-55 crossing over West Branch Sawmill Creek

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 20
	CORRESPONDENCE NOTES
g B	

Ed Burke

From: **Ilene Dailey**

Thursday, February 11, 2016 11:17 AM Sent:

To: Ed Burke

Fwd: I-55 culvert conditions Subject:

img-824133158-0001.pdf; ATT00001.htm; img-824133149-0001.pdf; ATT00002.htm **Attachments:**

Sent from my iPhone

Begin forwarded message:

From: "Book, Dustin" < Dustin.Book@stantec.com>

Date: February 11, 2016 at 10:59:38 AM CST

To: "Ilene Dailey (Ilene Dailey) (idailey@cbbel.com)" <idailey@cbbel.com>

Subject: FW: I-55 culvert conditions

Ilene -

Attached, please find the bridge condition report for the Sawmill Creek culvert (022-02071).

As noted below, The West Branch Sawmill Creek is a 5'X4' culvert and BOM does not inventory or inspect culverts of that size.

----Original Message-----From: O'Holleran, John

Sent: Thursday, September 03, 2015 8:02 AM

To: Book, Dustin; Mike Matkovic, P.E.; Ilene Dailey (Ilene Dailey) (idailey@cbbel.com) (idailey@cbbel.com)

Subject: FW: I-55 culvert conditions

FYI

John V. O'Holleran, P.E. **Principal** 135 South LaSalle Street **Suite 3100**

Chicago, IL 60603-4139 Direct 312.262.2400 Cell 312.287.1863 John.oholleran@stantec.com

Stantec

stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

-----Original Message-----

From: Smith, Corey J. [mailto:Corey.Smith@Illinois.gov]

Sent: Thursday, September 03, 2015 7:56 AM

To: O'Holleran, John

Cc: Baldauf, John E.; Wojcik, Rick F Subject: FW: I-55 culvert conditions

John O',

The Bureau of Maintenance is recommending repairs based on the inspections of the three structures listed below. The West Branch Sawmill Creek is a 5'X4' culvert and BOM does not inventory or inspect culverts of that size. Let me know if you need any other information.

Thanks,

Corey Smith 847.705.4086

----Original Message-----From: Mastny, Steve C

Sent: Monday, August 24, 2015 1:43 PM

To: Smith, Corey J.

Cc: Wilson, Sarah M; Abudan, Jamal; Tayyab, Kaamil R.; Baldauf, John E.

Subject: RE: I-55 culvert conditions

Hello Corey,

A quick question, any reason you asked about the below structures, but not 022-0514, which also carries I-55 in this area?

I've scanned and attached recent inspection reports for 022-0516, 022-0207, and 022-0513. I also included scanned plans for 022-0516, 022-0207, and a coring report for 022-0513.

Full size copies of inspection photos are located in the Pontis directory, which you should be able to access if you have access to SIMS: \\central\co\pontis\

For the structure you call out as:

No SN I-55 over West Branch Sawmill Creek

I'm not sure where exactly this is. Can you give me an exact location? Also, do you happen to know what size structure it is?

Reviewing the conditions based on our recent inspecitons, here's my take on reasonable scopes of work:

022-0516 - culvert repairs, including full depth patching at the construction joints, dumped rip rap in areas of erosion in channel

022-0207 - culvert repairs, including full depth patching at the construction joints

022-0513 - culvert repairs, including full depth patching at the construction joints, dumped rip rap in areas of erosion in channel

Steve

Steve Mastny, P.E. IDOT - District One South Area Bridge Inspection Engineer steve.mastny@illinois.gov 847-956-1494 From: Wilson, Sarah M

Sent: Saturday, August 22, 2015 7:06 AM

To: Mastny, Steve C

Subject: FW: I-55 culvert conditions

Steve - please pull this information together and send your thoughts on the need for replacement / repairs to Corey, with a cc to me.

Thanks.

From: Smith, Corey J.

Sent: Thursday, August 20, 2015 8:02 AM

To: Wilson, Sarah M Cc: Baldauf, John E.

Subject: I-55 culvert conditions

Sarah,

Could you please let us know the condition and provide the inspection reports for the following structures:

022-0516 I-55 over Wards Creek

022-0207 I-55 over Sawmill Creek

We would like to find out if they need to be replaced as part of the I-55 Managed Lane project.

Thanks,

Corey Smith
Illinois Department of Transportation
Bureau of Programming | Consultant Studies Unit
201 W. Center Court | Schaumburg, IL 60196

Direct: 847.705.4086

	Hydraulic Report – Interstate 55 (Stevenson Expressway) Over West Branch Sawmill Creek
	SECTION 21
	CD WITH PROJECT FILES
S B	

CD POCKET INSERTED HERE