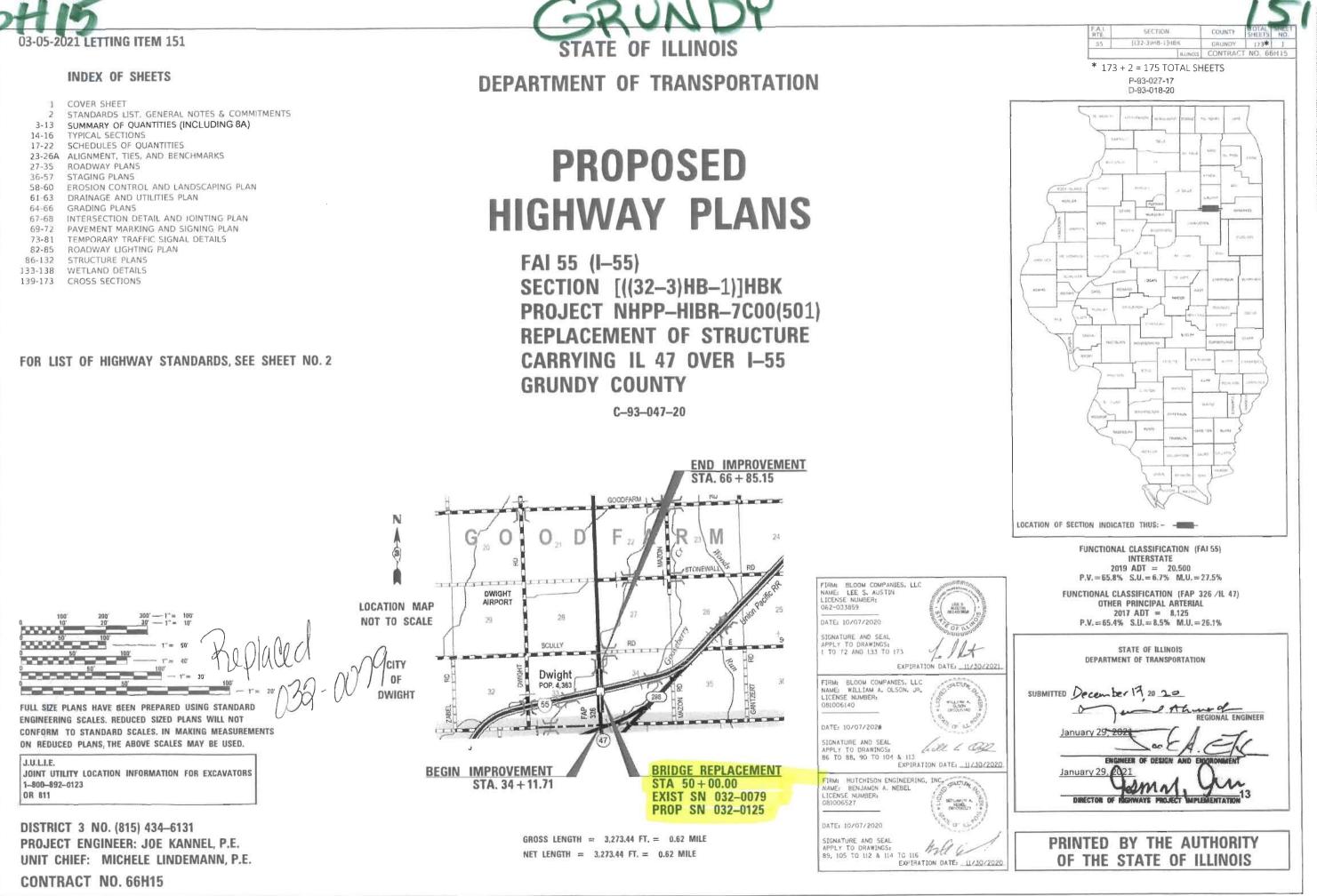
\$

41

. 3

`O

Ó


0 **

1

COVER SHEET 11 STANDARDS LIST, GENERAL NOTES & COMMITMENTS 2 SUMMARY OF QUANTITIES (INCLUDING 8A) TYPICAL SECTIONS EROSION CONTROL AND LANDSCAPING PLAN INTERSECTION DETAIL AND JOINTING PLAN TEMPORARY TRAFFIC SIGNAL DETAILS ROADWAY LIGHTING PLAN STRUCTURE PLANS

STATE OF ILLINOIS

PROPOSED

HIGHWAY STANDARDS

000001-07	STANDARD SYMBOLS, ABBREVIATIONS AND PATTERNS
001001-02	AREAS OF REINFORCEMENT BARS
001006	DECIMAL OF AN INCH AND OF A FOOT
280001-07	TEMPORARY EROSION CONTROL SYSTEMS
420001-09	PAVEMENT JOINTS
420101-06	24' (7.2 M) JOINTED PCC PAVEMENT
420106-06	36' (10.8 M) JOINTED PCC PAVEMENT
420401-13	PAVEMENT CONNECTOR (PCC) FOR BRIDGE APPROACH SLAB
420111-04	PCC PAVEMENT ROUNDOUTS
483001-05	PCC SHOULDER
515001-04	NAME PLATE FOR BRIDGES
542001-06	CONCRETE END SECTIONS FOR PIPE CULVERTS 15"(375 MM)
	THRU 84" (2100 MM) DIAMETER
542401-03	METAL FLARED END SECTION FOR PIPE CULVERTS
601001-05	PIPE UNDERDRAINS
601101-02	CONCRETE HEADWALL FOR PIPE UNDERDRAIN
606001-07	CONCRETE CURB TYPE B AND COMBINATION CONCRETE CURB AND
	GUTTER
606006-04	OUTLET FOR CONCRETE CURB AND GUTTER, TYPE B-6.24 (B-15.60)
606301-04	PC CONCRETE ISLANDS AND MEDIANS
606306-04	CORRUGATED PC CONRETE MEDIANS
610001-08	SHOULDER INLET WITH CURB
630001-12	STEEL PLATE BEAM GUARDRAIL
630201-07	PCC/HMA STABILIZATION AT STEEL PLATE BEAM GUARDRAIL
630301-09	SHOULDER WIDENING FOR TYPE 1 (SPECIAL) GUARDRAIL TERMINALS TRAFFIC BARRIER TERMINAL, TYPE 6
631031-16	SHOULDER RUMBLE STRIPS, 16 IN.
642001-02 643001-02	SAND MODULE IMPACT ATTENUATORS
701001-02	OFF-ROAD OPERATIONS, 2L, 2W, MORE THAN 15' (4.5 M) AWAY
701006-05	OFF-ROAD OPERATIONS, 2L, 2W, 15' (4.5 M) TO 24"(600 MM) FROM
/01000-05	PAVEMENT EDGE
701011-04	OFF-ROAD MOVING OPERATIONS, 2L, 2W, DAY ONLY
701201-05	LANE CLOSURE, 2L, 2W, DAY ONLY, FOR SPEEDS \geq 45 MPH
701301-04	LANE CLOSURE, 2L, 2W, SHORT TIME OPERATIONS
701326-04	LANE CLOSURE, 2L, 2W, PAVEMENT WIDENING, FOR SPEEDS \geq 45 MPH
701400-10	APPROACH TO LANE CLOSURE, FREEWAY/EXPRESSWAY
701401-12	LANE CLOSURE, FREEWAY/EXPRESSWAY
701421-08	LANE CLOSURE, MULTILANE, DAY OPERATIONS ONLY, FOR SPEEDS
	≥ 45 MPH TO 55 MPH
701422-10	LANE CLOSURE, MULTILANE, FOR SPEEDS \geq 45 MPH TO 55 MPH
701431-13	LANE CLOSURE, MULTILANE, UNDIV. WITH CROSSOVER, FOR SPEEDS
	\geq 45 MPH TO 55 MPH
701456-05	PARTIAL EXIT RAMP CLOSURE FREEWAY/EXPRESSWAY
701901-08	TRAFFIC CONTROL DEVICES
704001-08	TEMPORARY CONCRETE BARRIER
720001-01	SIGN PANEL MOUNTING DETAILS
720006-04	SIGN PANEL ERECTION DETAILS
780001-05	TYPICAL PAVEMENT MARKINGS
782006-01	GUARDRAIL AND BARRIER WALL REFLECTOR MOUNTING DETAILS
821101-02	LUMINAIRE WIRING IN POLE
825011-04	LIGHTING CONTROLLER PEDESTAL MOUNTED, 240V
835001-01	LIGHT TOWER
837001-05	LIGHT TOWER FOUNDATION
886001-01	DETECTOR LOOP INSTALLATIONS TYPICAL LAYOUTS FOR DETECTION LOOPS
886006-01	HTAL LATUUTS FOR DETECTION LOUPS

GENERAL NOTES

- 1 EXCEPT AS NOTED ON THE PLANS, PAVEMENT GRADES SHOWN ARE AT THE TOP OF PAVEMENT SURFACES.
- 2. BEFORE ORDERING PIPE CULVERTS OR PIPE DRAINS, THE CONTRACTOR SHALL CONSULT THE ENGINEER FOR EXACT LENGTHS.
- THE ENGINEER WILL BE THE SOLE JUDGE CONCERNING CURING TIME FOR THE З. VARIOUS HMA LIFTS.
- SHORT TERM PAVEMENT MARKING SHALL BE USED TO OUTLINE EXIT AND 4. ENTRANCE RAMPS FOR THE PRIME COAT APPLICATION AND EACH RESURFACING LIFT.
- 5. ALL ELEVATIONS REFERRING TO U.S.G.S. MEAN SEA LEVEL DATUM.
- THE FOLLOWING RATES OF APPLICATION HAVE BEEN USED IN CALCULATING PLAN 6. QUANTITIES:

GRANULAR MATERIALS	2
HMA RESURFACING	1
SHORT TERM PAVEMENT MARKING	1
MIX FOR CRACKS, JTS & FLGWYS	0
SUPPLEMENTAL WATERING	3
CALCIUM CHLORIDE	2
AGGREGATE DITCH CHECKS	5

2.05 TONS / CU YD 112 LBS / SQ YD / IN 10 FT / 100 FT OF APPLICATION 0.0003 TONS / SQ YD GAL / SQ YD / APPLICATION LB / SQ YD / APPLICATION TONS AGGREGATE

- 7. THE WORK REQUIRED TO CONNECT ANY SEWER TO AN EXISTING DRAINAGE STRUCTURE OR PIPE WILL NOT BE PAID FOR SEPARATELY, BUT WILL BE CONSIDERED AS INCLUDED IN THE CONTRACT UNIT PRICE BID FOR THE SEWER ITEMS.
- 8. MEMBERS OF JULIE KNOWN TO BE WITHIN THE LIMITS OF THE IMPROVEMENT ARE:

AT&T CENTURYLINK COMED NICOR GAS VILLAGE OF DWIGHT

9 NON-MEMBERS OF JULIE KNOWN TO BE WITHIN THE LIMITS OF THE IMPROVEMENT ARE:

NONE

COMMITMENTS

NONE

MD

BINDER

DESIGN

MIXTURE CO (MIXTURE

FRICTION

MIXTU

QUALITY MA

S

DENSITY TE

ISO N. WA

^ر

* ***** ,

· ,

× .5

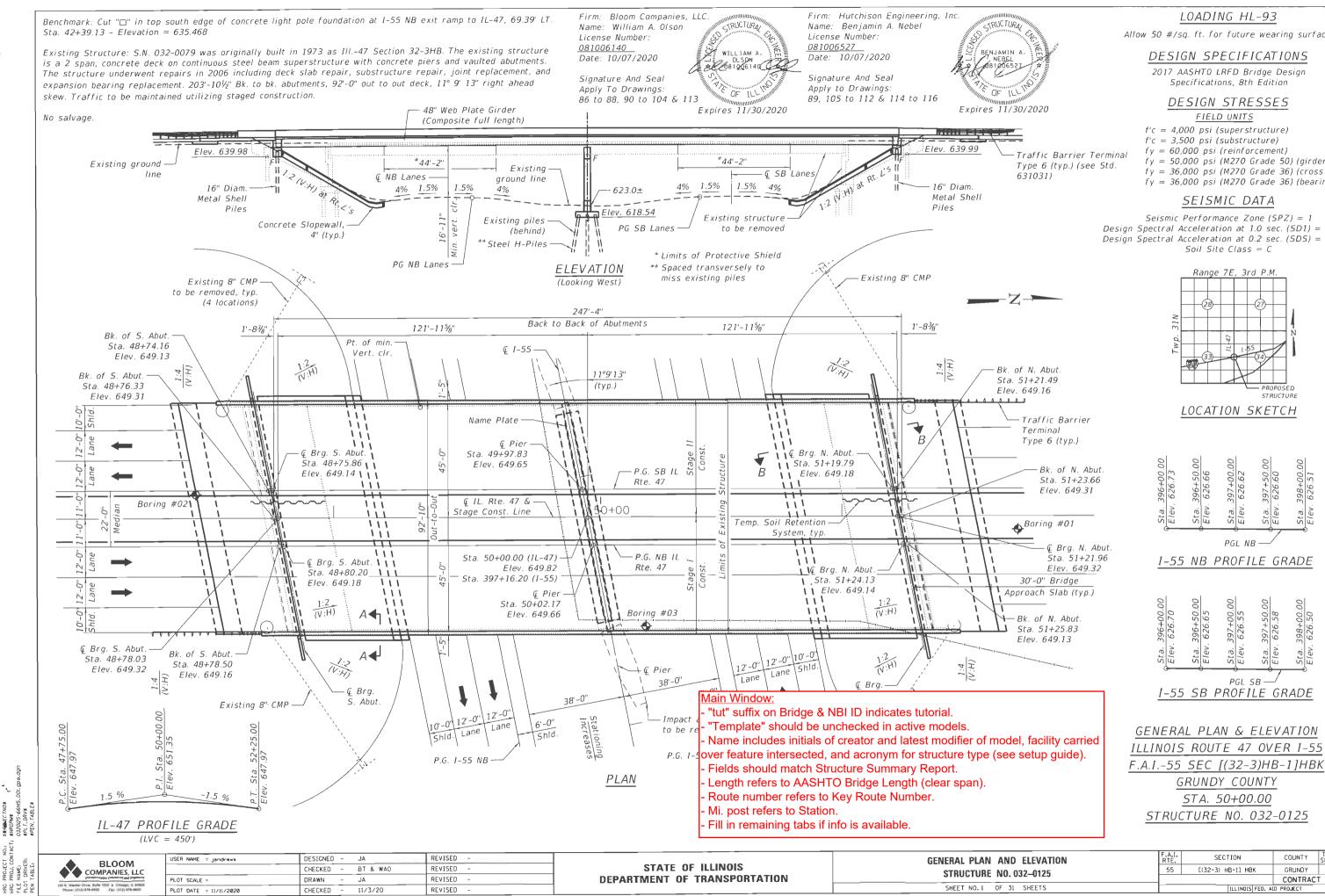
BLOOM	USER NAME = lborges	DESIGNED - TSB		REVISED -		HIGHWAY STANDARDS,			F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEET SHEETS NO.			
COMPANIES, LLC		DRAWN - TSB		REVISED -	STATE OF ILLINOIS		GENERAL NOTES AND COMMITMENTS		55	((32-3)HB-1)HBK	GRUNDY	173 2			
Infrastructure Deenetine and Ingradity		-	REVISED -	DEPARTMENT OF TRANSPORTATION		GENER	AL NUTE	2 AND	POIAUAUELIAU	ENTO			CONTRAC	CT NO. 66H15	
8. Wacher Drue, Suite 1059 + Chicago, IL 80000. Innel (312) 876-8665 Fac: (312) 876-8603	PLOT DATE = 11/12/2020	DATE - 11/3	3/20	REVISED -		SCALE: N/A	SHEET	OF	SHEETS	STA.	TO STA.		ILLINOIS FED. AI		

НМ	HMA MIXTURE REQUIREMENT TABLE									
LOCATIONS	TEMP PVMT / SHOULDER RESURFACING.	TEMP PVMT	ENTIRE PROJECT							
IXTURE USES	HMA SURFACE (2")	HMA BINDER (7")	HMA STABILIZED SUBBASE (4")							
GRADE (PG)	PG64-22	PG64-22	PG64-22							
N AIR VOIDS	4.0% @ N70	4.0% @ N70	4.0% @ N50							
COMPOSITION GRADATION)	IL 9.5	IL 19.0	IL 19.0							
AGGREGATE	MIXTURE C									
URE WEIGHT	112 LB/SY/IN	112 LB/SY/IN	112 LB/SY/IN							
IANAGEMENT PROGRAM	QC/QA	QC/QA	QC/QA							
SUBLOT SIZE	N/A	N/A	N/A							
EST METHOD	CORES	CORES	CORES/NUCLEAR							

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION DISTRICT THREE

REVIEWED BY:

DISTRICT STUDIES & PLANS ENGINEER


DATE:

EXAMINED BY:

DISTRICT CONSTRUCTION ENGINEER

DISTRICT MATERIALS ENGINEER

DISTRICT OPERATIONS ENGINEER

- 🕺

1.2

Allow 50 #/sg. ft. for future wearing surface.

DESIGN SPECIFICATIONS

2017 AASHTO LRFD Bridge Design

fy = 50,000 psi (M270 Grade 50) (girders) fy = 36,000 psi (M270 Grade 36) (cross frames) $f_V = 36,000 \text{ psi} (M270 \text{ Grade } 36) (bearings)$

5ta. 398+00.00 Elev. 626.51

398+00.00 626.50

<u>Elev.</u>

Seismic Performance Zone (SPZ) = 1 Design Spectral Acceleration at 1.0 sec. (SD1) = 0.074qDesign Spectral Acceleration at 0.2 sec. (SDS) = 0.129g

DELEVATION 032–0125		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.		
		[(32-3) HB-1] HBK	GRUNDY	173	86		
032-0123			CONTRAC	T NO. 6	56H15		
1 SHEETS	ILLINOIS FED. AID PROJECT						
I SHEETS	ID PROJECT			l			

INDEX OF SHEETS

- 1. General Plan and Elevation 2. General Notes, Index of Sheets & Total Bill of Material
- 3. Stage Construction Details 4. Footing Layout and Temporary Soil Retention System
- 5. Temporary Concrete Barrier for Stage Construction
- 6. Top of Deck Elevations I
- 7. Top of Deck Elevations II
- 8. Top of Deck Elevations III
- 9. Top of Deck Elevations IV
- 10. Top of Approach Slab Elevations
- 11. Superstructure 1 12. Superstructure - II
- 13. Superstructure Details
- 14. Diaphragm Details 15. Approach Slab Details - I
- 16. Approach Slab Details II
- 17. Framing Plan and Steel Girder Elevation
- 18. Structural Steel Details
- 19. Bearings Details
- 20. South Abutment
- 21. South Abutment Details
- 22. North Abutment 23. North Abutment Details
- 24. Pier
- 25. Pier

- 1

2.5

- 26. Metal Shell Pile Details
- 27. HP Pile Details
- 28. Bar Splicer Assembly and Mechanical Splicer Details
- 29. Soil Boring Logs
- 30. Soil Boring Logs
- 31. Soil Boring Logs

ABBREVIATIONS

ņ

Back of

abutment

HRC FRE PLO

2" PJF full length

Abut.	Abutment	E.F.	Each Face	SE	S
@	At	Elev.	Elevation	Shldr.	S
B.F.	Back Face	Exist.	Existing	Spa.	5
Bk.	Back	Exp.	Expansion	Std.	S
Brg.	Bearing	F.F.	Front Face	Sta.	S
Btw.	Between	Max.	Maximum	SW	S
Ę	Centerline	Min.	Minimum	Тур.	T
Ēlr.	Clearance	Ν.	North	U.N.O.	U
Cts.	Centers	NE	Northeast	Vert.	V
Const.	Construction	No.	Number	W.	N
Ø	Diameter	Pt.	Point		
E.	Fast	S.	South		

10'-0" at rt. L's, Typ.

1'-0" min. at

low brg. seat

4

6"

SECTION B-B

Poured against

undisturbed embankment

SE	Southeast
Shldr.	Shoulder
Spa.	Spaces
Std.	Standard
Sta.	Station
SW	Southwest
Тур.	Typical
U.N.O.	Unless Noted Otherwise
Vert.	Vertical
W.	West

3'-0"

* 1:6 (V:H)

. 3'-0"

0

6"

- GENERAL NOTES
- 1. Fasteners shall be ASTM F1325 Grade A325 Type 1, mechanically galvanized bolts. Bolts 7/8 in., holes 15/16 in., unless otherwise noted.
- Calculated weight of structural steel = 30,520 lb (AASTO M270 Gr. 36) 2 $= 792.950 \ lb (AASHTO M270 \ Gr. 50)$
- No field welding is permitted except as specified in the contract documents. 3
- Reinforcement bars designated (E) shall be epoxy coated. 4
- If the Contractor elects to use cantilever forming brackets on the exterior beams 5. or girders, the brackets shall be placed at the same locations as required for the hardwood blocks in Article 503.06(B) of the Standard Specifications. If additional cantilever forming brackets are required, hardwood blocking shall be wedged between the exterior and first interior beam at each of these additional bracket Incations
- Bearing seat surfaces shall be constructed or adjusted to the designated elevations 6. within a tolerance of $\frac{1}{2}$ in. (0.01 ft). Adjustment shall be made either by grinding the surface or by shimming the bearings.
- 7. The existing structural steel coating contains lead. The Contractor shall take appropriate precautions to deal with the presence of lead on this project.
- The Organic Zinc Rich Primer/Epoxy/Urethane Paint System shall be used for 8 painting of new structural steel except where otherwise noted. The entire system shall be shop applied, with the exception that the exterior surfaces and the bottom of the bottom flange of fascia beams, masked off connections surfaces, field installed fasteners, and damaged areas shall be touched up and finished coated in the field. The color of the final finished coat for all the interior steel surfaces shall be Gray, Munsell No. 5B 7/1. The color of the final finished coat for the exterior and bottom flange of the fascia beams shall be Interstate Green, Munsell No. 7.5G 4/8.
- 9 The embankment configuration shown shall be the minimum that must be placed and compacted prior to construction of the abutments
- Slopewall shall be reinforced with welded wire fabric, 6 in. x 6 in. W4.0xW4.0, 10. weighing 58 lbs. per 100 sq. ft.
- 11. Slipforming of parapets shall not be permitted.

Edge of deck -

2'-0"

SECTION A-A

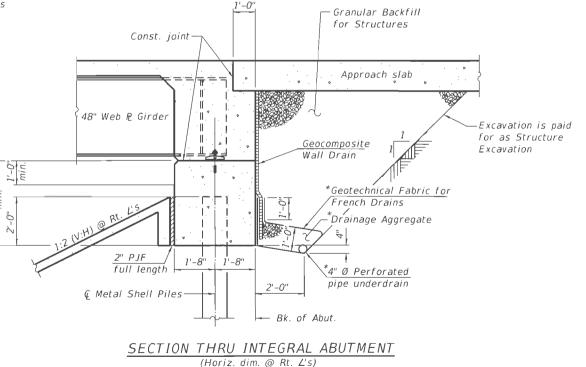
12. All drainage system components shall extend to 2'-0" from the end of each wingwall except an outlet pipe shall extend until intersecting with the side slopes. The pipes shall drain into concrete headwalls. (See Article 601.05 of the Standard Specifications and Highway Standard 601101).

STATION 50+00.00

BUILT 202_ BY

STATE OF ILLINOIS

FAI-55 SEC, [(32-3)HB-1]HBK

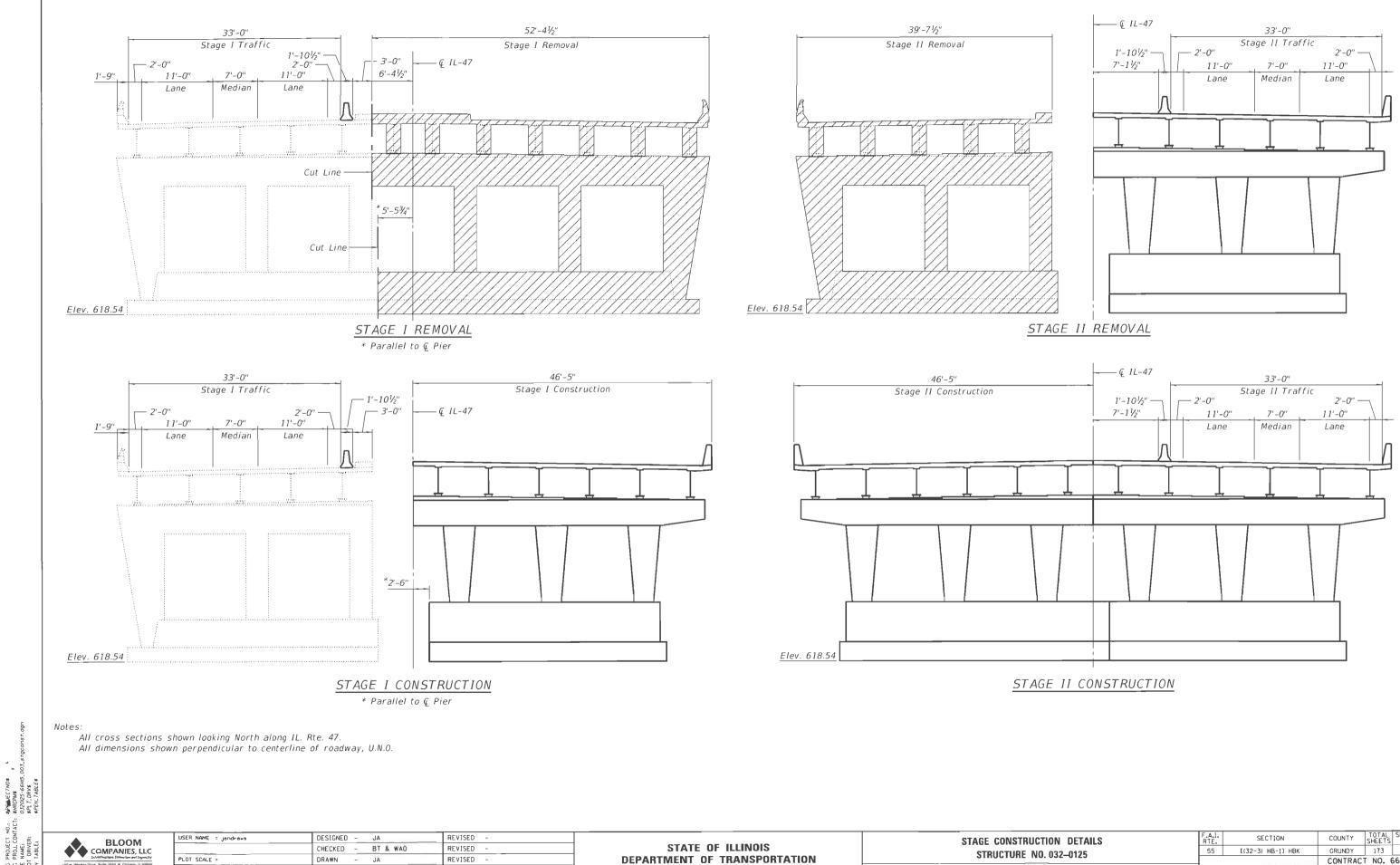

LOADING HL-93

STRUCTURE NO. 032-0125

NAME PLATE

See Std. 515001-04

Removal of Existin Slope Wall Removal Protective Shield Structure Excavation Concrete Structure Concrete Superstru Bridge Deck Groovi Protective Coat Concrete Superstru Furnishing and Ere Stud Shear Connect Reinforcement Bar Bar Splicers Slope Wall 4 Inch Furnishing Metal S Furnishing Steel Pi Driving Piles Test Pile Metal Sh Test Pile Steel HP Pile Shoes Name Plates Anchor Bolts, 1" Anchor Bolts, 11/5" Temporary Soil Re Granular Backfill F Geocomposite Wall Pipe Underdrains F

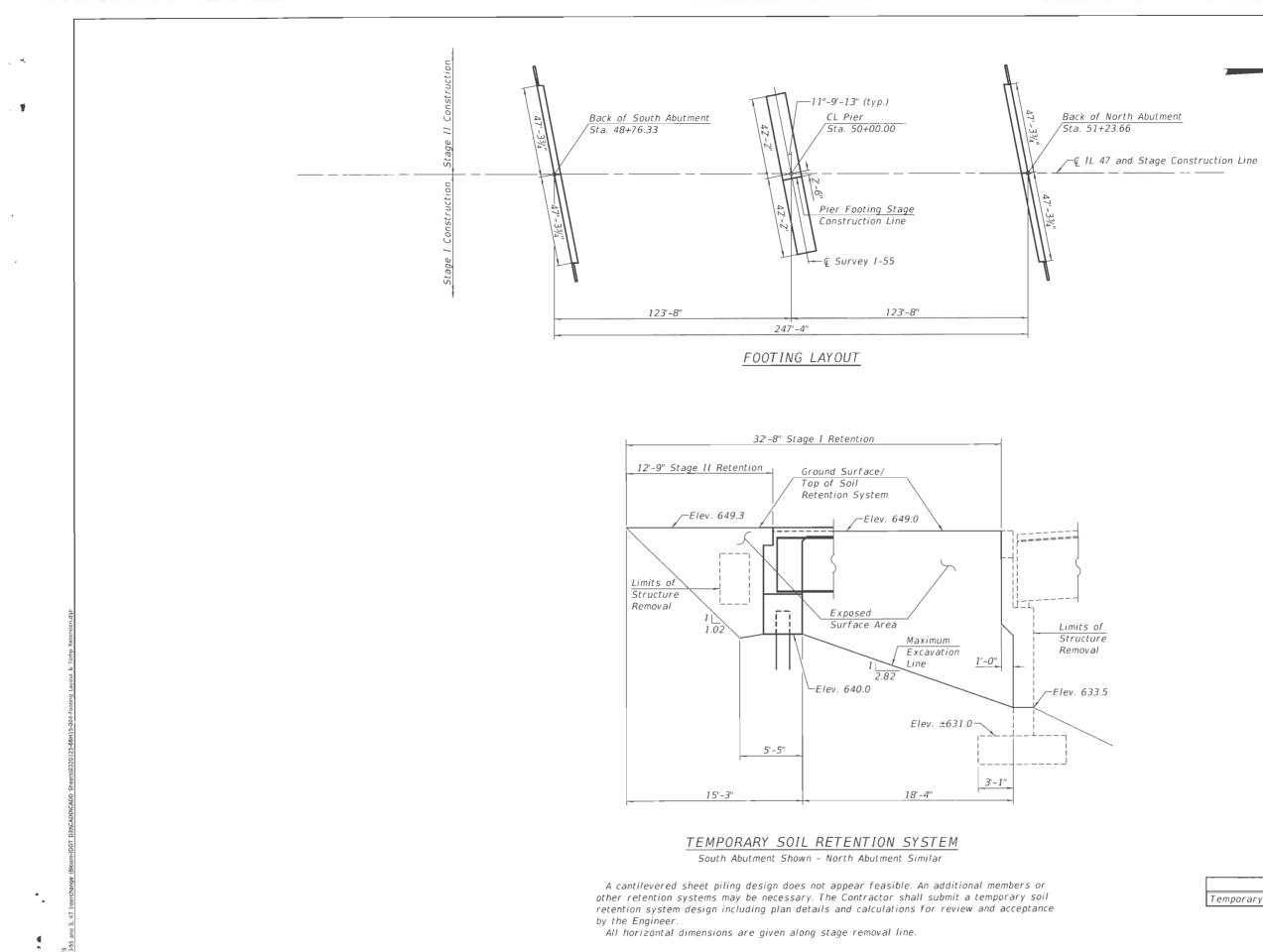

* Included in the cost of Pipe Underdrains for Structures (See Special Provisions)

BLOOM COMPANIES, LLC Difference in the second second Participation of the second second Participation of the second second second Participation of the second secon	USER NAME = jandrawa	DESIGNED -	٨٤	REVISED -		GENERAL NOTES, INDEX OF SHEETS &
		CHECKED -	BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 0
	PLOT SCALE =	DRAWN -	JA	REVISED -	DEPARTMENT OF TRANSPORTATION	
		CHECKED -	2/1/21	REVISED -		SHEET NO. 2 OF 31

TOTAL BILL OF MATERIAL

ITEM	UNIT	SUPER	SUB	TOTAL
ng Structures	Each	1		1
э́/	Sq Yd		583	583
	Sq Yd		844	844
ion	Cu Yd	_	805	805
es	Cu Yd	57.3	330.2	387.5
ucture	Cu Yd	870.7		870.7
ving	Sq Yd	2,261		2,261
	Sq Yd	3,338		3,338
ucture (Approach Slab)	Cu Yd	255.9		255.9
ecting Structural Steel	L Sum	1		1
ctors	Each	7,164		7,164
s, Epoxy Coated	Pound	309,180	58,490	367,670
	Each	1,184		1,184
	Sq Yd		970	970
5hell Piles 16" x 0.375"	Foot		1,199	1,199
Piles HP12x53	Foot		2,450	2,450
	Foot		3,649	3,649
nells	Each		2	2
P12x53	Each		1	1
	Each		24	24
	Each		1	1
	Each		48	48
	Each		24	24
etention System	Sq Ft		628	628
For Structures	Cu Yd		490	490
Drain	Sq Yd		171	171
For Structures 4"	Foot		206	206

OF SHEETS & TOTAL BILL OF MATERIAL	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
RUCTURE NO. 032-0125		[(32-3) HB-1] HBK	GRUNDY	173	87
			CONTRACT	NO. 6	6H15
ET NO. 2 OF 31 SHEETS	ILLINOIS FED. AID PROJECT				_



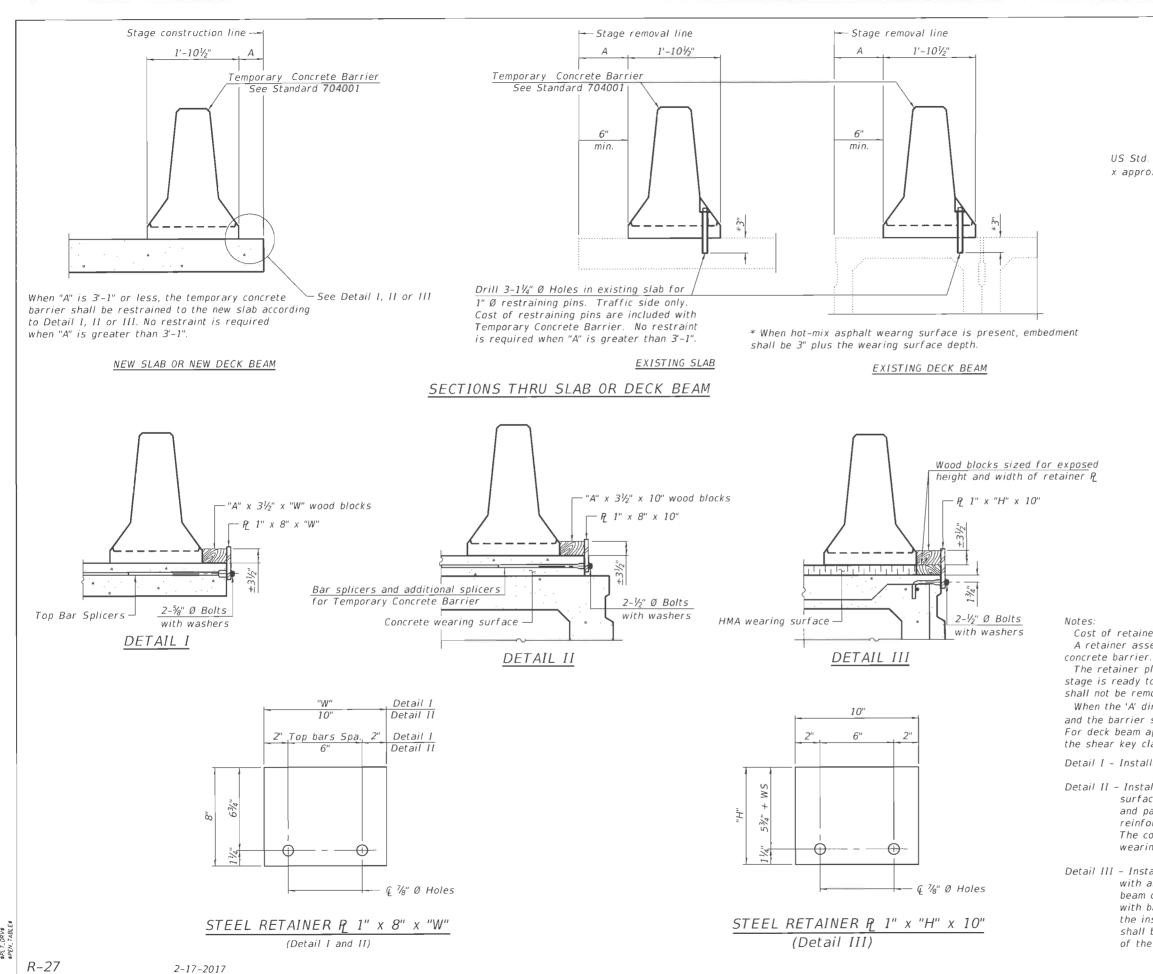
CON .	BLOOM	USER NAME = jandraws	DESIGNED - JA	REVISED -		STAGE CONSTRUCT
ROJE ROJ. ROJ. AME: AME: ABLE	COMPANIES, LLC		CHECKED - BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO.
월 월 2 🗌 🖂	Info Instance Limition and Ingenity	PLOT SCALE =	DRAWN – JÄ	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO.
HRC FILE PLO	Phone: (312) 876-8500 Fax (312) 876-9600	PLOT DATE = 11/12/2020	CHECKED - 11/3/20	REVISED -		SHEET NO. 3 OF 3

4 2

.

TION DETAILS). 032–0125		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
		[(32-3) HB-1] HBK	GRUNDY	173	88
			CONTRACT	Γ NO. 6	6H15
31 SHEETS	ILLINOIS FED. ALD PROJECT				

.

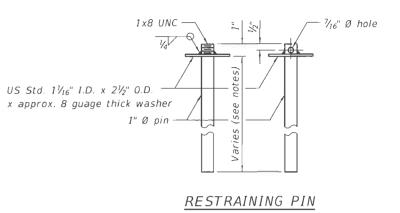

Since 1945 PLOT DATE = 1/11/2020 CHECKED - BAN/ZL REVISED - SHEET	Hutchison Engineering, Inc. Jacksonville-Moline-Peoria-Shorewood Since 1945	USER NAME = BNebel PLOT SCALE = PLOT DATE = 13/11/2020	DESIGNED - BAN CHECKED - ZL DRAWN - JCW CHECKED - BAN/ZL	REVISED - REVISED - REVISED - REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	FOOTING LAYOUT & TEMP STRUCTUR
---	---	--	---	--	---	-----------------------------------

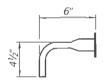
-Z-----

BILL OF MATERIAL

ITEM	UNIT	TOTAL
Temporary Soil Retention System	SQ FT	628

Y SOIL RETENTION SYSTEM	FAI RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
032-0125	55	[(32-3)HB-1]HBK	GRUNDY	173	89
052-0125			CONTRACT	NO. 66	5H15
31 SHEETS		ILLINOIS FED. A	ID PROJECT		
31 SHEETS		ILLINOIS FED. A		1.10.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



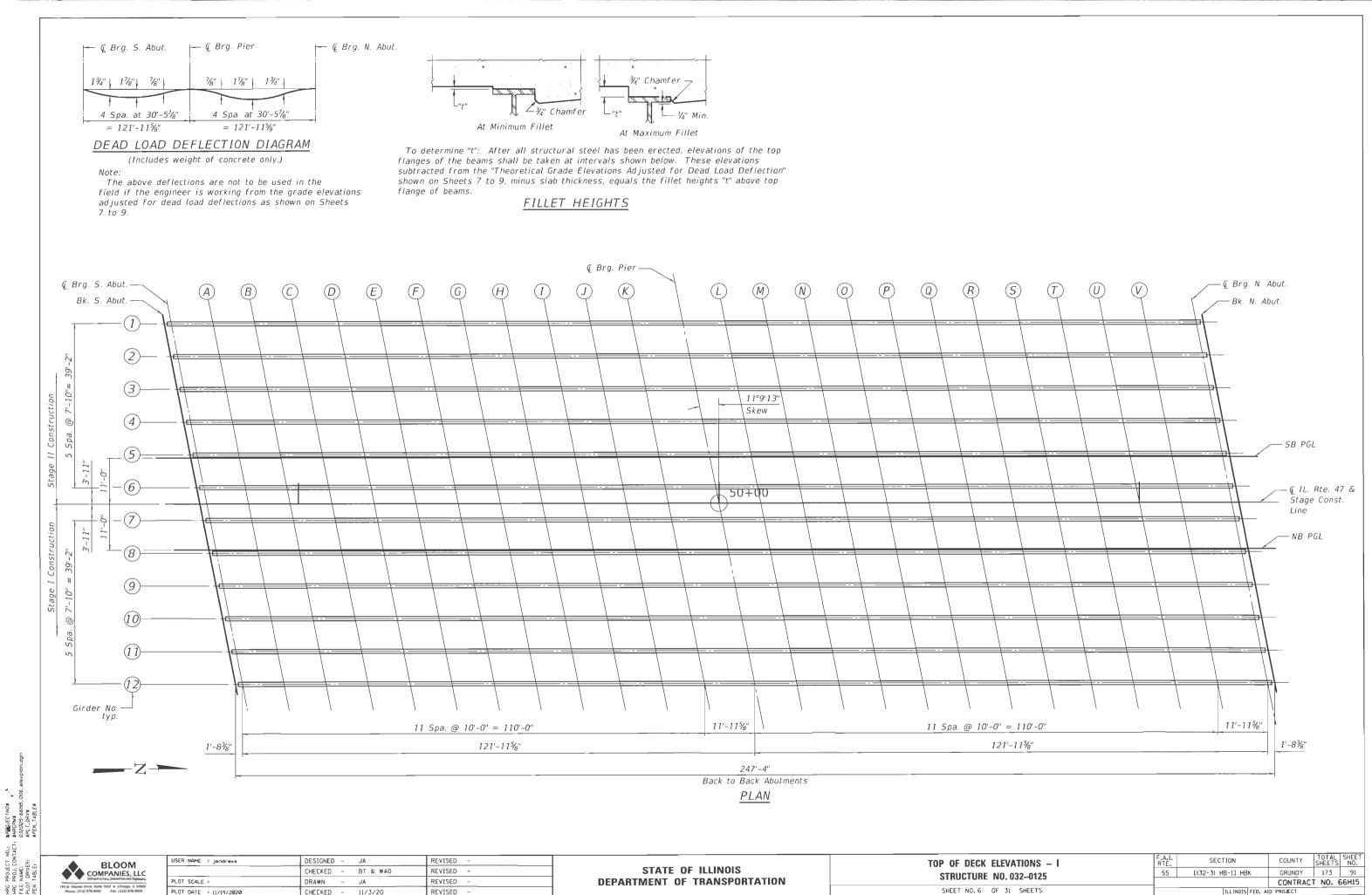

- 5

- 1

.

spract			(Detail I and II)	_	(Detail III)	of the bar splicers is included w	with the deck beam.
ACT: A	R-27	2-17-2017					
L SONT	. BLOOM	USER NAME = jondrawa	DESIGNED - JA	REVISED -		TEMPORARY CONCRETE BARRIER FOR STAGE CONSTRUCTION	F.A.I. RTE. SECTION COUNTY TOTAL SHEET NO.
IN I	COMPANIES, LLC		CHECKED - BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 032–0125	55 [(32-3) HB-1] HBK GRUNDY 173 90
E E N L F	Infrastructure Inc. In and Digmethy	PLOT SCALE =	DRAWN - JÁ	REVISED -	DEPARTMENT OF TRANSPORTATION	31NUGTUNE NO. 032-0125	CONTRACT NO. 66H15
HRC FILE PLO	Phone (312) 876-8500 Fax (312) 876-8605	PLOT DATE = 11/11/2020	CHECKED - 11/3/20	REVISED -		SHEET NO. 5 OF 31 SHEETS	ILLINOIS FED. AID PROJECT

BAR SPLICER FOR #4 BAR - DETAIL III


Cost of retainer assembly is included with Temporary Concrete Barrier. A retainer assembly shall be located at the approximate @ of each temporary concrete barrier.

The retainer plate shall not be removed until the concrete on the adjacent stage is ready to be poured. For Detail III applications the retainer plate shall not be removed until just prior to placing the adjacent beam. When the 'A' dimension is less than $1\frac{1}{2}$ ", the wood block shall be omitted and the barrier shall be placed in direct contact with the steel retainer plate. For deck beam applications the minimum required 'A' distance is 6" to accommodate the shear key clamping device.

Detail I - Installation for a new bridge deck or bridge slab.

Detail II – Installation for a new deck beam with an initial concrete wearing surface. Additional bar splicers shall be provided at 6'-0" centers and paired with the bar splicers of the concrete wearing surface reinforcement to accommodate the installation of the retainer assemblies. The cost of the additional bar splicers is included with the concrete wearing surface.

Detail III – Installation for a new deck beam with no initial wearing surface or with an initial hot-mix asphalt (HMA) wearing surface present. The deck beam directly beneath the temporary concrete barrier shall be fabricated with bar splicer inserts in the side of the beam, as detailed, to accommodate the installation of the retainer assemblies. A pair of bar splicers, 6" apart, shall be placed at 6'-0" centers along the length of the beam. The cost of the bar splicers is included with the deck beam.

.

् <u>स</u>

\$ON1 HPCF HPCF 23200 FPL T PROJECT NO.: PROJ. CONTACT: NAME: T DRIVER: T ABLE:

, jo

<u>GIRDER 1</u>

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
Bk. S. Abut.	48+67.84	32.083	648.55	648.55
© Brg. S. Abut.	48+69.54	32.083	648.57	648.57
A Construction of the second s	48+79.54	32.083	648.65	648.71
B	48+89.54	32.083	648.73	648.85
C	48+99.54	32.083	648.80	648.96
D	49+09.54	32.083	648.86	649.05
E	49+19.54	32.083	648.92	649.11
F	49+29.54	32.083	648.97	649.15
G	49+39.54	32.083	649.01	649.17
н Н	49+49.54	32.083	649.05	649.17
	49+59.54	32.083	649.08	649.16
j	49+69.54	32.083	649.10	649.15
ĸ	49+79.54	32.083	649.12	649.14
Ç Brg. Pier	49+91.51	32.083	649.13	649.13
L	50+01.51	32.083	649.14	649.15
М	50+11.51	32.083	649.13	649.17
N	50+21.51	32.083	649.12	649.20
0	50+31.51	32.083	649.10	649.22
P	50+41.51	32.083	649.08	649.23
Q	50+51.51	32.083	649.05	649.23
R	50+61.51	32.083	649.01	649.20
5	50+71.51	32.083	648.97	649.15
τ	50+81.51	32.083	648.91	649.08
U	50+91.51	32.083	648.86	648.98
V	51+01.51	32.083	648.79	648.87
🤅 Brg. N. Abut.	51+13.47	32.083	648.71	648.71
BK. N. Abut.	51+15.17	32.083	648.69	648.69

G	I	R	D	Ε	R	2

	GIF	RDER 2				GIF	RDER 3		
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection	Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dea Load Deflection
Bk. S. Abut.	48+69.38	24.250	648.72	648.72	Bk. S. Abut.	48+70.93	16.417	648.86	648.86
Ç Brg. S. Abut.	48+71.08	24.250	648.74	648.74	Ç Brg. S. Abut.	48+72.63	16.417	648.87	648.87
A	48+81.08	24.250	648.82	648.89	A	48+82.63	16.417	648.95	649.02
B	48+91.08	24.250	648.90	649.02	В	48+92.63	16.417	649.03	649.15
Ċ	49+01.08	24.250	648.97	649.13	С	49+02.63	16.417	649.09	649.26
D	49+11.08	24.250	649.03	649.22	D	49+12.63	16.417	649.16	649.35
E	49+21.08	24.250	649.08	649.29	E	49+22.63	16.417	649.21	649.42
F	49+31.08	24.250	649.13	649.33	F	49+32.63	16.417	649.26	649.46
G	49+41.08	24.250	649.18	649.34	G	49+42.63	16.417	649.30	649.47
Ĥ	49+51.08	24.250	649.21	649.34	H	49+52.63	16.417	649.34	649.47
I	49+61.08	24,250	649.24	649.33	I	49+62.63	16.417	649.36	649.45
J	49+71.08	24.250	649.26	649.31	J	49+72.63	16.417	649.39	649.43
К	49+81.08	24.250	649.28	649.30	K	49+82.63	16.417	649.40	649.42
Ç Brg. Pier	49+93.05	24.250	649.29	649.29	Ç Brg. Pier	49+94.59	16.417	649.41	649.41
L	50+03.05	24.250	649.29	649.30	L	50+04.59	16.417	649.41	649.42
М	50+13.05	24.250	649.29	649.33	M	50+14.59	16.417	649.40	649.45
N	50+23.05	24.250	649.28	649.35	N	50+24.59	16.417	649.39	649.47
0	50+33.05	24.250	649.26	649.38	0	50+34.59	16.417	649.37	649.49
P	50+43.05	24.250	649.23	649.39	P	50+44.59	16.417	649.35	649.51
Q	50+53.05	24.250	649.20	649.39	Q	50+54.59	16.417	649.31	649.50
R	50+63.05	24.250	649.16	649.36	R	50+64.59	16.417	649.27	649.48
5	50+73.05	24.250	649.12	649.31	S	50+74.59	16.417	649.23	649.42
Т	50+83.05	24.250	649.06	649.24	T	50+84.59	16.417	649.17	649.35
U	50+93.05	24.250	649.00	649.14	U	50+94.59	16.417	649.11	649.25
V	51+03.05	24.250	648.94	649.02	V	51+04.59	16.417	649.05	649.13
GBrg. N. Abut.	51+15.02	24.250	648.85	648.85	🥥 Brg. N. Abut.	51+16.56	16.417	648.96	648.96
Bk. N. Abut.	51+16.72	24.250	648.84	648.84	Bk. N. Abut.	51+18.26	16.417	648.95	648.95

GIRDER 4

		DENT		
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
Bk. S. Abut.	48+72.47	8.583	648.99	648.99
Ç Brq. S. Abut.	48+74.17	8.583	649.00	649.00
£ 3. g. 5. 1.021.	48+84.17	8.583	649.08	649.15
В	48+94.17	8.583	649.15	649.28
Ċ	49+04.17	8.583	649.22	649.39
D	49+14.17	8.583	649.28	649.48
Ε	49+24.17	8.583	649.34	649.54
F	49+34.17	8.583	649.38	649.58
G	49+44.17	8.583	649.42	649.59
Н	49+54.17	8.583	649.46	649.59
I	49+64.17	8.583	649.49	649.57
J	49+74.17	8.583	649.51	649.55
К	49+84.17	8.583	649.52	649.54
<i>Q</i> Brg. Pier	49+96.14	8.583	649.53	649.53
L	50+06.14	8.583	649.53	649.54
М	50+16.14	8.583	649.52	649.56
N	50+26.14	8.583	649.51	649.59
0	50+36.14	8.583	649.49	649.61
Р	50+46.14	8.583	649.46	649.62
Q	50+56.14	8.583	649.42	649.61
R	50+66.14	8.583	649.38	649.59
S	50+76.14	8.583	649.34	649.53
Т	50+86.14	8.583	649.28	649.46
U	50+96.14	8.583	649.22	649.36
V	51+06.14	8.583	649.15	649.23
🖉 Brg. N. Abut.	51+18.11	8.583	649.06	649.06
Bk. N. Abut.	51+19.81	8.583	649.05	649.05

GIRDER 5

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection	Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Deac Load Deflection
Bk. S. Abut.	48+74.02	0.75	649.12	649.12	Bk. S. Abut.	48+74.16	0.00	649.13	649.13
& Brg. S. Abut.	48+75.71	0.75	649.13	649.13	€ Brg. S. Abut.	48+75.86	0.00	649.14	649.14
A	48+85.71	0.75	649.21	649.28	A	48+85.86	0.00	649.22	649.29
В	48+95.71	0.75	649.28	649.41	В	48+95.86	0.00	649.30	649.42
С	49+05.71	0.75	649.35	649.52	С	49+05.86	0.00	649.36	649.53
D	49+15.71	0.75	649.41	649.61	D	49+15.86	0.00	649.42	649.62
E	49+25.71	0.75	649.46	649.67	E	49+25.86	0.00	649.47	649.68
F	49+35.71	0.75	649.51	649.70	F	49+35.86	0.00	649.52	649.72
G	49+45.71	0.75	649.55	649.72	G	49+45.86	0.00	649.56	649.73
Н	49+55.71	0.75	649.58	649.71	Н	49+55.86	0.00	649.59	649.72
I	49+65.71	0.75	649.61	649.69	I	49+65.86	0.00	649.62	649.71
J	49+75.71	0.75	649.63	649.67	J	49+75.86	0.00	649.64	649.69
ĸ	49+85.71	0.75	649.64	649.66	K	49+85.86	0.00	649.65	649.67
🧯 Brg. Pier	49+97.68	0.75	649.65	649.65	🧲 Brg. Pier	49+97.83	0.00	649.66	649.66
L	50+07.68	0.75	649.64	649.66	L	50+07.83	0.00	649.66	649.67
М	50+17.68	0.75	649.64	649.68	M	50+17.83	0.00	649.65	649.69
N	50+27.68	0.75	649.62	649.70	N	50+27.83	0.00	649.63	649.71
0	50+37.68	0.75	649.60	649.72	0	50+37.83	0.00	649.61	649.73
Р	50+47.68	0.75	649.57	649.73	P	50+47.83	0.00	649.58	649.74
Q	50+57.68	0.75	649.54	649.73	Q	50+57.83	0.00	649.55	649.74
R	<i>50+67.68</i>	0.75	649.49	649.70	R	50+67.83	0.00	649.50	649.71
5	50+77.68	0.75	649.45	649.64	S	50+77.83	0.00	649.46	649.65
T	50+87.68	0.75	649.39	649.57	T	50+87.83	0.00	649.40	649.58
U	50+97.68	0.75	649.33	649.46	U	50+97.83	0.00	649.34	649.47
V	51+07.68	0.75	649.26	649.34	V	51+07.83	0.00	649.27	649.35
∉ Brg. N. Abut.	51+19.65	0.75	649.17	649.17	∉ Brg. N. Abut.	51+19.80	0.00	649.18	649.18
Bk. N. Abut.	51+21.35	0.75	649.16	649.16	Bk. N. Abut.	51+21.50	0.00	649.17	649.17

HEC PROJECT NO.: APROPAS ' HEC PROJECT NO.: APROPAS HEC PROJECNITACI: \$HRCPAS DECT DAVE: D2022-6H9-007-0H0-1 PLOT DRIVER: \$PEN.TABLES FEN TABLE: \$PEN.TABLES

. .

. 2

.

BLOOM	USER NAME = jandrews	DESIGNED -	JA	REVISED -		TOP OF DECK ELEVATIONS - II	F.A.I. RTE.	SECTION	COUNTY SHEETS NO.
COMPANIES, LLC		CHECKED -	BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 032–0125	55	[(32-3) HB-1] HBK	GRUNDY 173 92
Endresstructure Energetien and Engenisty	PLOT SCALE =	DRAWN -	JA	REVISED -	DEPARTMENT OF TRANSPORTATION	51NUGIUNE NU. 032-0125			CONTRACT NO. 66H15
Phone: (212) 876-8500 Fax: (212) 876-8609	PLOT DATE = 11/11/2020	CHECKED -	11/3/20	REVISED -		SHEET NO. 7 OF 31 SHEETS		ILLINOIS FED. A	ID PROJECT

<u>SB PGL</u>

	GIR	DER 6		
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
Bk. S. Abut. ⊈ Brg. S. Abut. A B C D E F G H I J K ⊈ Brg. Pier L M N O P Q R S T U V	$\begin{array}{c} 48+75.56\\ 48+77.26\\ 48+87.26\\ 48+97.26\\ 49+07.26\\ 49+07.26\\ 49+17.26\\ 49+37.26\\ 49+37.26\\ 49+37.26\\ 49+47.26\\ 49+47.26\\ 49+67.26\\ 49+67.26\\ 49+77.26\\ 49+77.26\\ 49+87.26\\ 50+29.23\\ 50+29.23\\ 50+29.23\\ 50+49.23\\ 50+59.23\\ 50+59.23\\ 50+59.23\\ 50+59.23\\ 50+69.23\\ 51+21.20\\ 51+22.90\\ \end{array}$	-7.083 -7	649.25 649.26 649.34 649.34 649.41 649.48 649.59 649.63 649.67 649.70 649.73 649.75 649.76 649.76 649.76 649.75 649.74 649.68 649.65 649.60 649.55 649.50 649.50 649.44 649.27 649.27	649.25 649.26 649.41 649.54 649.65 649.73 649.83 649.83 649.83 649.82 649.77 649.76 649.77 649.76 649.77 649.77 649.79 649.81 649.83 649.84 649.84 649.84 649.84 649.81 649.57 649.57 649.57 649.26
DK. N. ADUL	JITZZ.30	-7.005	045.20	045.20

STAGE CONSTRUCTION LINE/G IL-47

Locati	Theoretical Grade Elevations Adjusted For Dead Load Deflection	Theoretical Grade Elevations	Offset	Station	Location
Bk. S	649.31	649.31	±11.00	48+76.33	Bk. S. Abut.
€ Brg. S	649.33	649.33	± 11.00	48+78.03	& Brg. S. Abut,
2 9	649.47	649.40	±11.00	48+88.03	A
	649.60	649.48	±11.00	48+98.03	В
	649.71	649.54	±11.00	49+08.03	С
	649.79	649.60	±11.00	49+18.03	D
	649.86	649.65	±11.00	49+28.03	Ε
	649.89	649.69	±11.00	49+38.03	F
	649.90	649.73	±11.00	49+48.03	G
	649.89	649.76	±11.00	49+58.03	Н
	649.88	649.79	±11.00	49+68.03	I
	649.85	649.81	±11.00	49+78.03	J
	649.83	649.82	±11.00	49+88.03	K
€ Brg	649.82	649.82	±11.00	50+00.00	🤅 Brg. Pier
	649.83	649.82	±11.00	50+10.00	L
	649.85	649.81	±11.00	50+20.00	М
	649.87	649.79	±11.00	50+30.00	N
	649.89	649.77	±11.00	50+40.00	0
	649.90	649.74	±11.00	50+50.00	Р
	649.89	649.70	±11.00	50+60.00	Q
	649.86	649.66	±11.00	50+70.00	R
	649.81	649.61	±11.00	50+80.00	S
	649.73	649.55	±11.00	50+90.00	Т
	649.63	649.49	±11.00	51+00.00	U
	649.50	649.42	±11.00	51+10.00	V
∉ Brg. N	649.33	649.33	±11.00	51+21.97	∉ Brg. N. Abut.
Bk. N	649.31	649.31	±11.00	51+23.67	Bk. N. Abut.

<u>NB PGL</u>

	<u></u>			
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
Bk. S. Abut.	48+78.50	0.00	649.17	649.17
& Brg. S. Abut.	48+80.20	0.00	649.18	649.18
A	48+90.20	0.00	649.25	649.32
В	49+00.20	0.00	649.32	649.45
Ċ	49+10.20	0.00	649.39	649.56
D	49+20.20	0.00	649.44	649.64
Ë	49+30.20	0.00	649.49	649.70
F	49+40.20	0.00	649.54	649.73
G	49+50.20	0.00	649.57	649.74
Н	49+60.20	0.00	649.60	649.73
1	49+70.20	0.00	649.63	649.72
J	49+80.20	0.00	649.64	649.69
К	49+90.20	0.00	649.65	649.67
🧲 Brg. Pier	50+02.17	0.00	649.66	649.66
L	50+12.17	0.00	649.65	649.67
M	50+22.17	0.00	649.64	649.68
N	50+32.17	0.00	649.62	649.70
0	50+42.17	0.00	649.60	649.72
P	50+52.17	0.00	649.57	649.73
Q	50+62.17	0.00	649.53	649.72
R	50+72.17	0.00	649.48	649.69
5	50+82.17	0.00	649.43	649.63
Т	50+92.17	0.00	649.37	649.55
U	51+02.17	0.00	649.31	649.45
V	51+12.17	0.00	649.24	649.32
⊈ Brg. N. Abut.	51+24.14	0.00	649.14	649.14
Bk. N. Abut.	51+25.84	0.00	649.13	649.13

Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection	Locatio	'n	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
Bk. S. Abut.	48+78.65	0.75	649.15	649.15	Bk. S.	Abut.	48+80.19	8.583	649.05	649.05
@ Brg. S. Abut.	48+80.35	0.75	649.17	649.17	€ Brg. S.		48+81.89	8.583	649.06	649.06
⊈ brg. 5. Abut. A	48+90.35	0.75	649.25	649.31	£ -· 5· -·	A	48+91.89	8.583	649.14	649.21
B	49+00.35	0.75	649.31	649,44		В	49+01.89	8.583	649.21	649.33
C	49+10.35	0.75	649.38	649.55		C	49+11.89	8.583	649.27	649.44
Ď	49+20.35	0.75	649.43	649.63		D	49+21.89	8.583	649.32	649.52
F	49+30.35	0.75	649.48	649.69		E	49+31.89	8.583	649.37	649.58
F	49+40.35	0.75	649.53	649.72		F	49+41.89	8.583	649.42	649.61
G	49+50.35	0.75	649.56	649.73		G	49+51.89	8.583	649.45	649.62
н	49+60.35	0.75	649.59	649.72		н	49+61.89	8.583	649.48	649.61
I	49+70.35	0.75	649.62	649.70		1	49+71.89	8.583	649.50	649.59
I	49+80.35	0.75	649.63	649.68		J	49+81.89	8.583	649.52	649.57
ĸ	49+90.35	0.75	649.64	649.66		κ	49+91.89	8.583	649.53	649.54
€ Brg. Pier	50+02.32	0.75	649.65	649.65	€ Brg.	Pier	50+03.86	8.583	649.53	649.53
£	50+12.32	0.75	649.64	649.65	2 5	L	50+13.86	8.583	649.52	649.53
M	50+22.32	0.75	649.63	649.67		М	50+23.86	8.583	649.51	649.55
N	50+32.32	0.75	649.61	649.69		N	50+33.86	8.583	649.49	649.57
0	50+42.32	0.75	649.59	649.71		0	50+43.86	8.583	649.46	649.59
P	50+52.32	0.75	649.56	649.72		P	50+53.86	8.583	649.43	649.59
a	50+62.32	0.75	649.52	649.71		Q	50+63.86	8.583	649.39	649.58
R	50+72.32	0.75	649.47	649.68		R	50+73.86	8.583	649.35	649.55
S	50+82.32	0.75	649.42	649.62		S	50+83.86	8.583	649.29	649.49
T	50+92.32	0.75	649.36	649.54		T	50+93.86	8.583	649.24	649.41
Ü	51+02.32	0.75	649.30	649.43		U	51+03.86	8.583	649.17	649.30
V	51+12.32	0.75	649.23	649.31		V	51+13.86	8.583	649.10	649.18
Ç Brg. N. Abut.	51+24.29	0.75	649.13	649.13	Ç Brg. N.	Abut.	51+25.83	8.583	649.00	649.00
Bk. N. Abut.	51+25.98	0.75	649.12	649.12	BŔ. N.	Abut.	51+27.53	8.583	648.99	648.99

. W

. .

.

. BLOOM	USER NAME = jandraws	DESIGNED - JA	REVISED -		TOP OF DECK ELEVATIONS - III	RTE, SECTION COUNTY SHEETS NO.
COMPANIES, LLC		CHECKED - BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 032–0125	55 [(32-3) HB-1] HBK GRUNDY 173 93
Infrastructure Immediated Depending 192 N. Wasser Drive, Suite 1930 + Chicago, IL 62000	PLOT SCALE =	DRAWN - JA	REVISED -	DEPARTMENT OF TRANSPORTATION	STRUCTURE NU. 032-0125	CONTRACT NO. 66H15
Phone: (212) 676-5000 Pat: (312) 876-9800	PLOY DATE = 11/11/2020	CHECKED - 11/3/20	REVISED -		SHEET NO. 8 OF 31 SHEETS	ILLINOIS FED. AID PROJECT

	GIR	DER 7		
ation	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
S. Abut. S. Abut. A B C D E F G H I J K Brg. Pier L M N O P Q R S T U V V N. Abut. N. Abut.	$\begin{array}{c} 48+77.10\\ 48+78.80\\ 48+78.80\\ 48+98.80\\ 49+08.80\\ 49+08.80\\ 49+28.80\\ 49+28.80\\ 49+28.80\\ 49+58.80\\ 49+58.80\\ 49+58.80\\ 49+58.80\\ 49+58.80\\ 49+68.80\\ 49+78.80\\ 49+78.80\\ 49+78.80\\ 50+00.77\\ 50+10.77\\ 50+20.77\\ 50+20.77\\ 50+30.77\\ 50+20.77\\ 50+30.77\\ 50+20.77\\ 50+30.77\\ 50+20.77\\$	-7.083 -7	649.26 649.27 649.35 649.42 649.42 649.54 649.59 649.64 649.71 649.73 649.75 649.75 649.76 649.75 649.75 649.75 649.73 649.75 649.55 649.25 649.25	649.26 649.27 649.42 649.55 649.66 649.74 649.80 649.83 649.84 649.84 649.82 649.82 649.76 649.76 649.77 649.79 649.79 649.79 649.83 649.83 649.83 649.83 649.83 649.83 649.83 649.83 649.83 649.84 649.83 649.83 649.84 649.83 649.84 649.83 649.84 649.83 649.84 649.83 649.84 649.83 649.84 649.83 649.84 649.67 649.56 649.25

<u>GIRDER 9</u>

GIRDER 10

	0111			
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection
Bk. S. Abut.	48+81.74	16.417	648.94	648.94
G Brg. S. Abut.	48+83.44	16.417	648.96	648.96
∉ brg. S. Abut. A	48+93.44	16.417	649.03	649.10
B	49+03.44	16.417	649.10	649.23
C C	49+13.44	16.417	649.16	649.33
D	49+23.44	16.417	649.22	649.41
F	49+33.44	16.417	649.26	649.47
E F	49+43.44	16.417	649.30	649.50
` G	49+53.44	16.417	649.34	649.51
Ĥ	49+63.44	16.417	649.37	649.50
1	49+73.44	16.417	649.39	649.48
·	49+83.44	16.417	649.40	649.45
ĸ	49+93.44	16.417	649.41	649.43
∉ Brg. Pier	50+05.41	16.417	649.41	649.41
€ Digition	50+15.41	16.417	649.40	649.42
M	50+25.41	16.417	649.39	649.43
N	50+35.41	16.417	649.37	649.45
0	50+45.41	16.417	649.34	649.46
P	50+55.41	16.417	649,31	649.47
Q	50+65,41	16.417	649.27	649.46
R	50+75.41	16.417	649.22	649.43
5	50+85.41	16.417	649.17	649.37
Ť	50+95.41	16.417	649.11	649.28
Ŭ	51+05.41	16.417	649.04	649.18
v	51+15.41	16.417	648.97	649.05
€ Brg. N. Abut.	51+27.37	16.417	648.87	648.87
Bk. N. Abut.	51+29.07	16.417	648.86	648.86

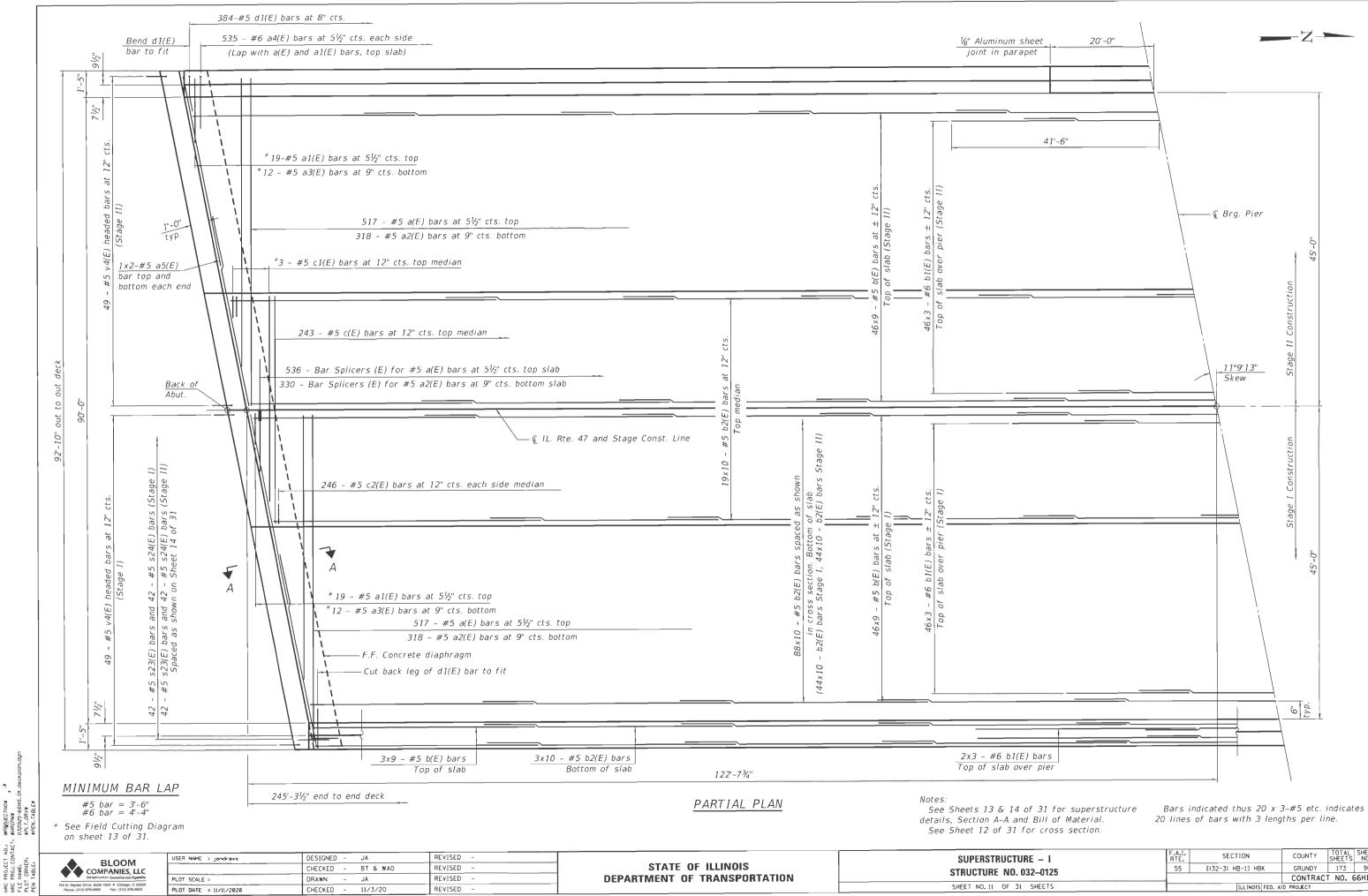
	GIR	DER 11				GIR	DER 12		
Location	Station	Offset	Theoretical Grade Elevations	Theoretical Grade Elevations Adjusted For Dead Load Deflection	Location	Station	Offset	Theoretical Grade Elevations	Theoretical Gra Elevations Adjusted For Do Load Deflectio
Bk. 5. Abut.	48+83.28	24.25	648.84	648.84	Bk. S. Abut.	48+84.83	32.083	648.69	648.69
& Brg. S. Abut.	48+84.98	24.25	648.85	648.85	∉ Brg. S. Abut.	48+86.53	32.083	648.71	648.71
A	48+94.98	24.25	648.92	648.99	A	48+96.53	32.083	648.78	648.84
В	49+04.98	24.25	648.99	649.12	В	49+06.53	32.083	648.84	648.96
С	49+14.98	24.25	649.05	649.22	С	49+16.53	32.083	648.90	649.06
D	49+24.98	24.25	649.10	649.30	D	49+26.53	32.083	648.96	649.14
E	49+34.98	24.25	649.15	649.36	E	49+36.53	32.083	649.00	649.20
F	49+44.98	24.25	649.19	649.39	F	49+46.53	32.083	649.04	649.22
G	49+54.98	24.25	649.22	649.39	G	49+56.53	32.083	649.07	649.23
Н	49+64.98	24.25	649.25	649.38	H	49+66.53	32.083	649.10	649.22
1	49+74.98	24.25	649.27	649.36	I	49+76.53	32.083	649.12	649.20
J	49+84.98	24.25	649.28	649.33	J	49+86.53	32.083	649.13	649.18
K	49+94.98	24.25	649.29	649.31	ĸ	49+96.53	32.083	649.14	649.15
€ Brg. Pier	50+06.95	24.25	649.29	649.29	€ Brg. Pier	50+08.49	32.083	649.13	649.13
L	50+16.95	24.25	649.28	649.30	L	50+18.49	32.083	649.12	649.14
М	50+26.95	24.25	649.27	649.31	M	50+28.49	32.083	649.11	649.15
N	50+36.95	24.25	649.25	649.33	N	50+38.49	32.083	649.09	649.16
0	50+46.95	24.25	649.22	649.34	0	50+48.49	32.083	649.06	649.17
Р	50+56.95	24.25	649.18	649.35	P	50+58.49	32.083	649.02	649.17
Q	50+66.95	24.25	649.14	649.33	Q	50+68.49	32.083	648.98	649.16
R	50+76.95	24.25	649.10	649.30	R	50+78.49	32.083	648.93	649.12
5	50+86.95	24.25	649.04	649.24	S	50+88.49	32.083	648.88	649.06
Т	50+96.95	24.25	648.98	649.16	T	50+98.49	32.083	648.81	648.98
U	51+06.95	24.25	648.91	649.05	U	51+08.49	32.083	648.74	648.87
V	51+16.95	24.25	648.84	648.92	V	51+18.49	32.083	648.67	648.74
Ç Brg. N. Abut.	51+28.92	24.25	648.74	648.74	∉ Brg. N. Abut.	51+30.46	32.083	648.57	648.57
Bk. N. Abut.	51+30.62	24.25	648.72	648.72	Bk. N. Abut.	51+32.16	32.083	648.55	648.55

HRC PROJECT NO.: SPANDECTNOS HRC PROJ. CONTACT: SHARMAS FILE NAME: 0.12025-66/HS.009_0404701 FLC NAME: 2.17.0412 PEN TABLE: 5.PEN.TABLES

- 1

.

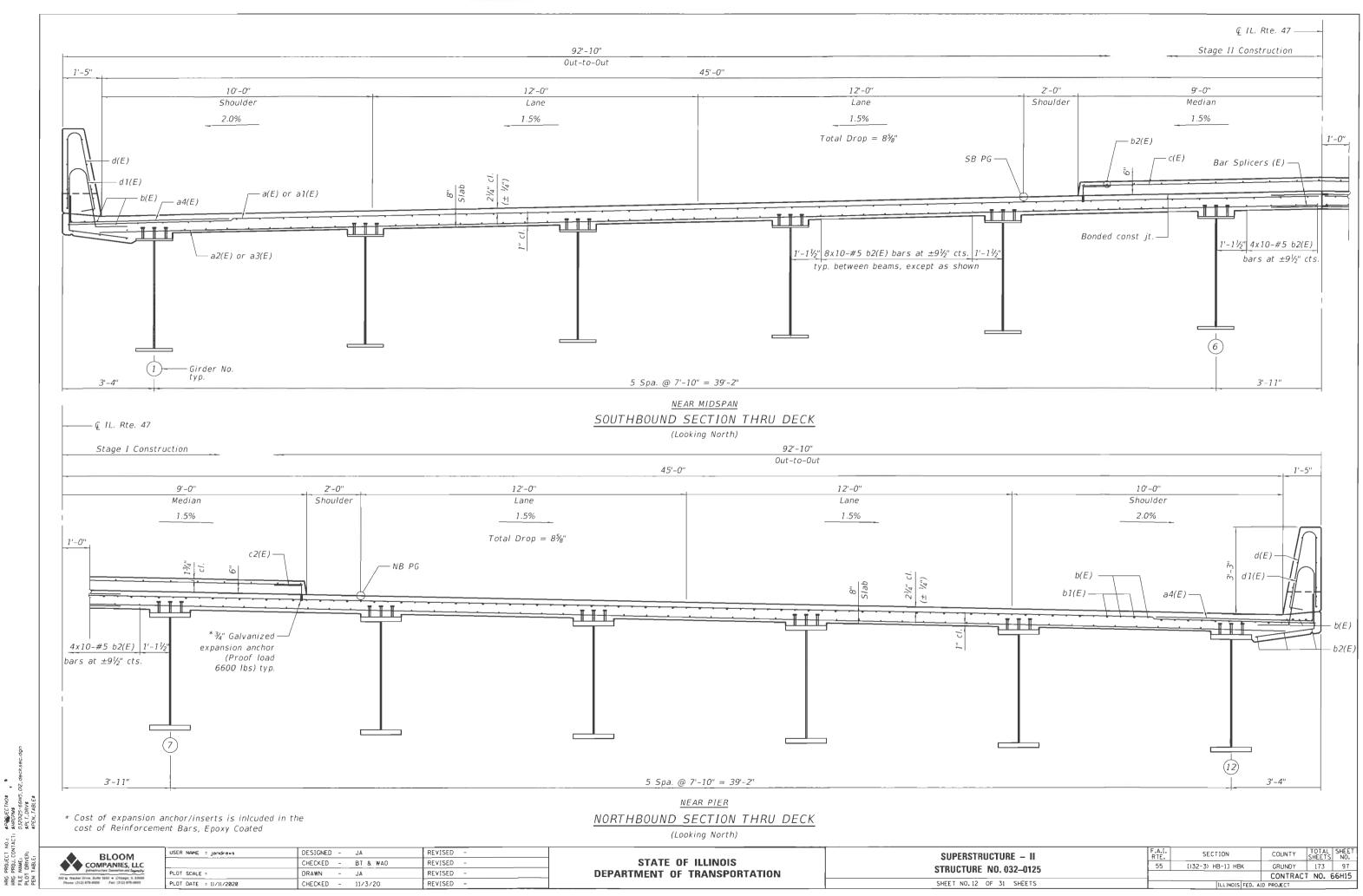
BLOOM	USER NAME = jondraws	DESIGNED -	JA	REVISED -		TOP OF DECK ELEVATIONS - IV	F.A.I. RTE. SEC	TION COUNTY TOTAL SHEET NO.
COMPANIES, LLC		CHECKED ~	BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 032–0125	55 E(32-3) H	
Editorities fare Descettion and Dependity	PLOT SCALE =	DRAWN -	JA	REVISED -	DEPARTMENT OF TRANSPORTATION		_	CONTRACT NO. 66H15
Para (312) 878-8500 Par (312) 878-8600	PLOT DATE = 11/11/2020	CHECKED -	11/3/20	REVISED -		SHEET NO. 9 OF 31 SHEETS		ILLINOIS FED. AID PROJECT


WEST E	DGE OF SHO	DULDER		WEST E	EDGE OF PAV	<u>EMENT</u>			<u>SB PGL</u>		STAGE CO	VSTRUCTI	ON LINE/Ç I	<u>L-47</u>
Location	Station	Offset	Theoretical Grade Elevations	Location	Station	Offset	Theoretical Grade Elevations	Location	Station	Offset Theoretical Grade Elevations	Location	Stati	on Offset	The G Ele
S. End of S. Approach A1 A2 N. End of S. Approach	48+38.48 48+48.48 48+58.48 48+68.48	34.00 34.00 34.00 34.00	648.23 648.33 648.43 648.52	S. End of S. Approach A1 A2 N. End of S. Approach	48+40.45 48+50.45 48+60.45 48+70.45	24.00 24.00 24.00 24.00	648.45 648.55 648.65 648.74	S. End of S. Approach A1 A2 N. End of S. Approach	48+45.18 48+55.18 48+65.18 48+75.18	0.00 648.86 0.00 648.96 0.00 649.05 0.00 649.14	S. End of S. Approach A1 A2 N. End of S. Approach	48+47 48+57 48+67 48+77	7.35 +/- 11.0 7.35 +/- 11.0	00 6 00 6
S. End of N. Approach A3 A4 N. End of N. Approach	51+13.78 51+23.78 51+33.78 51+43.78	34.00 34.00 34.00 34.00	648.67 648.59 648.50 648.41	5. End of N. Approach A3 A4 N. End of N. Approach	51+15.75 51+25.75 51+35.75 51+45.75	24.00 24.00 24.00 24.00	648.85 648.77 648.68 648.59	S. End of N. Approach A3 A4 N. End of N. Approach	51+20.48 51+30.48 51+40.48 51+50.48	0.00649.170.00649.090.00649.000.00648.90	S. End of N. Approach A3 A4 N. End of N. Approach	51+22 51+32 51+42 51+52	2.65 +/- 11.0 2.65 +/- 11.0	00 6
						1			LL		<u>NB PGL</u>		I	
										Locatio	n Station	Offset	Theoretical Grade Elevations	
5.	Edge of S. — Approach	(A1)	(A2)	N. Edge of S. Approach	S. Edge of N Approach		(A3) (A4)	N. Edge of N. Approach		S. End of S. A N. End of S. A	A1 48+59.52 A2 48+69.52	0.00 0.00 0.00 0.00	648.90 649.00 649.09 649.17	
	10'-0''			W. Edge of Shoulder	W. Edge Shoula	ler				5. End of N. A N. End of N. A	A3 51+34.82 A4 51+44.82	0.00 0.00 0.00 0.00	649.14 649.05 648.96 648.86	
	00 12'-0"			W. Edge of Pavement	W. Edge Pavem		Ì				EAST EDGE OF PA	VEMENT		
	II Construction			<u>11°9'13"</u> Skew	SB PGL					Locatic	n Station	Offset	Theoretical Grade Elevations	
	Stage -			ي IL Rte. 47 &	Stage Const. Line					S. End of S. A N. End of S. A	A1 48+64.25 A2 48+74.25	24.00 24.00 24.00 24.00	648.59 648.68 648.77 648.85	
	2'-0'' 15	\longrightarrow	<u> </u>	<u> </u>	NB PGL					S. End of N. A N. End of N. A	A3 51+39.55 A4 51+49.55	24.00 24.00 24.00 24.00	648.74 648.65 648.55 648.45	
	Stage I Construction	١									EAST EDGE OF SH	OULDER		
	5tag			E. Edge Paveme	e of ent	E. E Pa	Edge of			Locatic	n Station	Offset	Theoretical Grade Elevations	
	10'-0''			E. Edge Shoulde		E.	Edge of			S. End of S. / N. End of S. /	A1 48+66.37 A2 48+76.37	34.00 34.00 34.00 34.00	648.41 648.50 648.59 648.67	
							_			1		1		

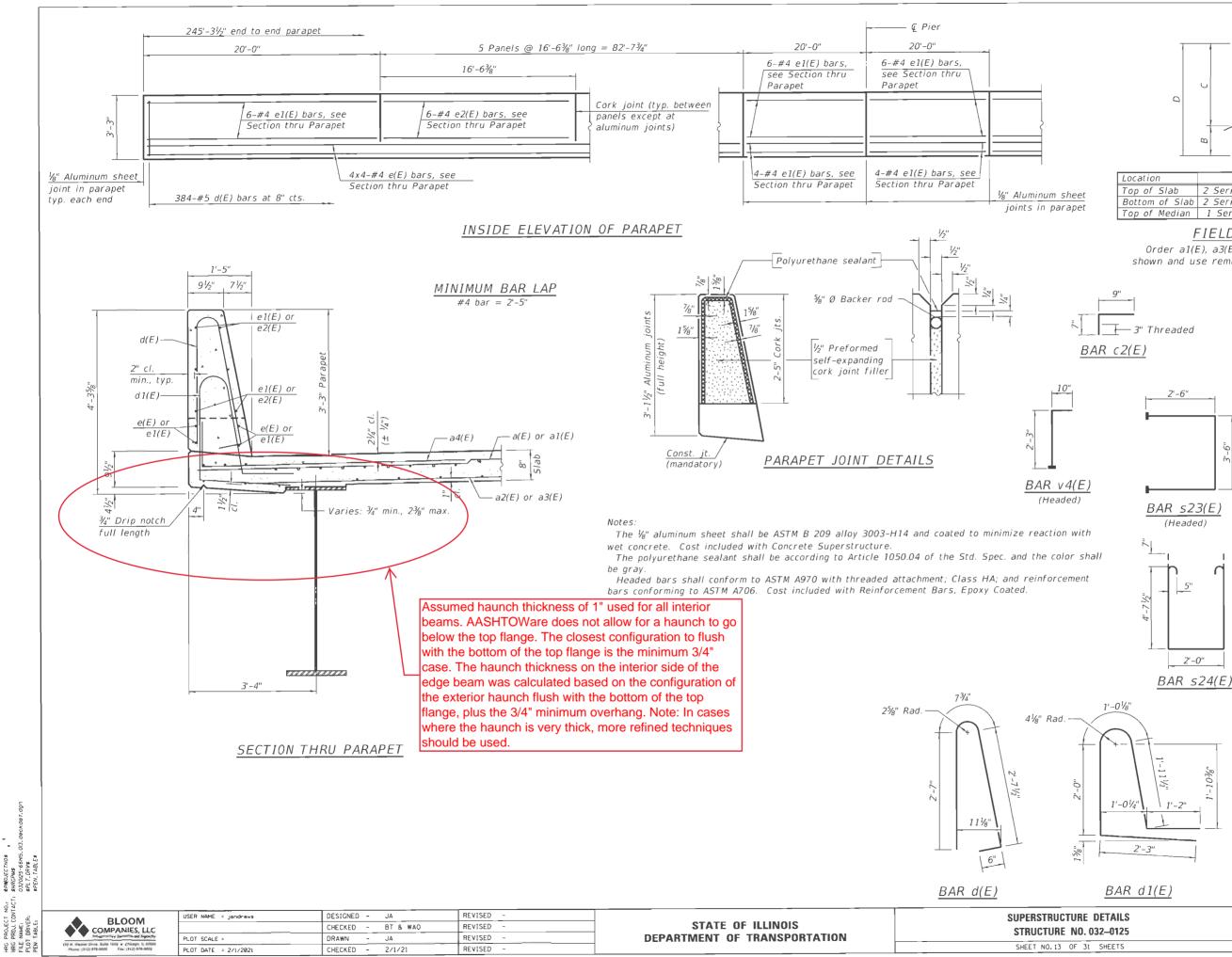
. .

. t

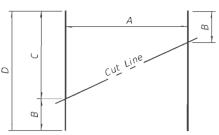
.


	<u>SOUTH APPROAC</u>	<u>H</u>	<u>NORTH APPROACH</u>			
USER NAME = jandrews	DESIGNED – JA CHECKED – BT & WAO	REVISED - REVISED -	STATE OF ILLINOIS	TOP OF APPROACH SLAB ELEVATIONS	NIL.	COUNTY
			STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	TOP OF APPROACH SLAB ELEVATIONS STRUCTURE NO. 032-0125 SHEET NO. 10 OF 31 SHEETS	RTE. SECTION 55[(32-3) HB-1] HBK	GRUNDY

- -



TURE – I). 032–0125		SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
		((32-3) HB-1] HBK	GRUNDY	173	96
CONTRACT NO. 6				56H15	
31 SHEETS	ILLINDIS FED. AID PROJECT				


- -

. 1

. 🝨

- 1

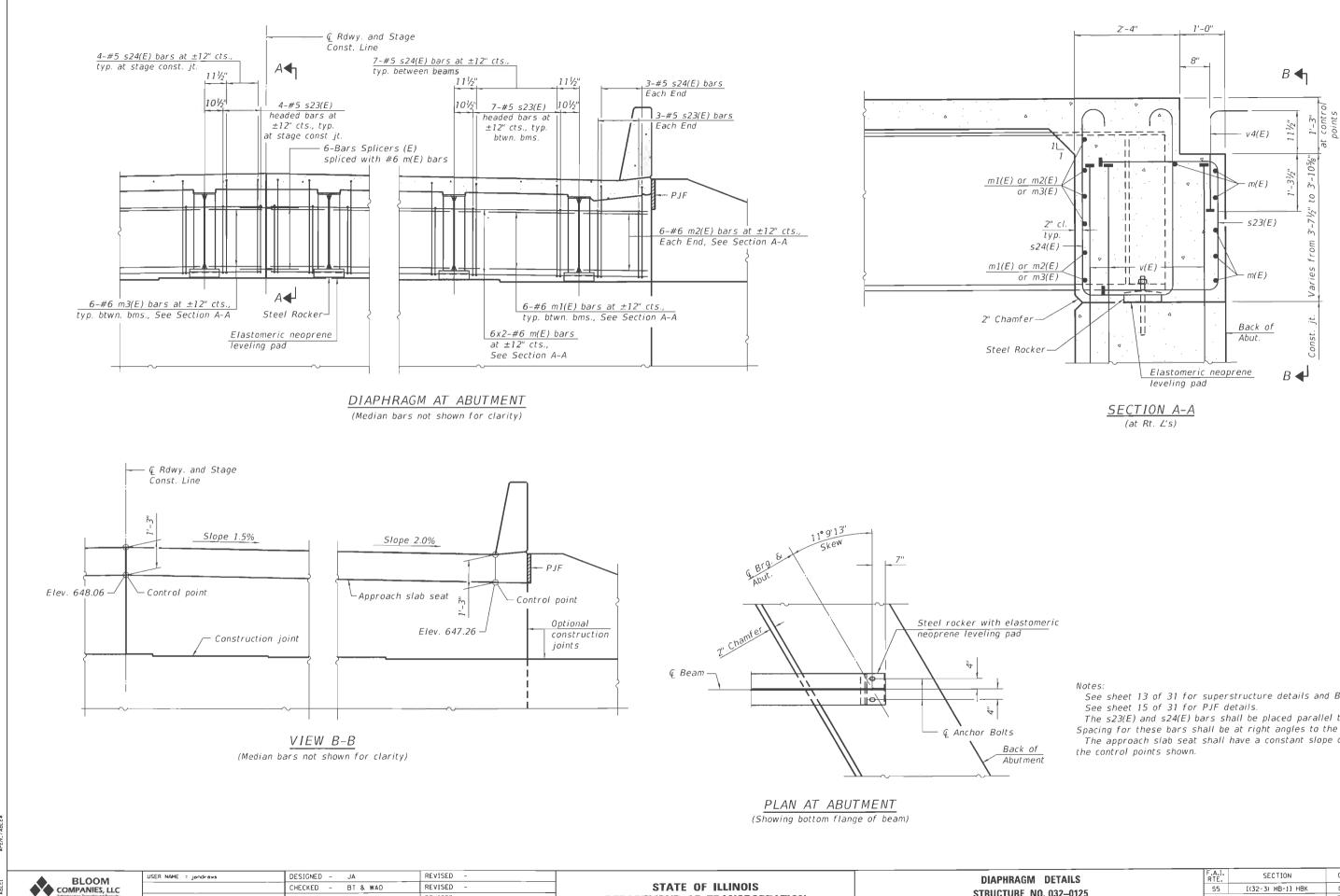
	Location	Α	В	С	D
t	Top of Slab	2 Series of 19 - #5 a1(E) bars	3'-0"	44'-5"	47'-5"
-	Bottom of Slab	2 Series of 12 - #5 a3(E) bars	3'-0"	44'-5"	47'-5"
u.	Top of Median	1 Series of 3 - #5 c1(E) bars	3'-0"	14'-7"	17'-7"

1/.

FIELD CUTTING DIAGRAM

Order a1(E), a3(E) and c1(E) bars full length. Cut as shown and use remainder of bars in opposite end of deck.

BAR	d1(E)


T	 	
1'-0"		
	7'-4"	

BAR a4(E)

SUPERSTRUCTURE

Bar	No.	Size	Length	Shape
a(E)	1034	#5	46'-2"	
a1(E)	38	#5	47'-5"	
a2(E)	636	#5	45'-2"	
a3(E)	24	#5	47'-5"	
a4(E)	1070	#6	8'-4"	L
a5(E)	16	#5	25'-5"	
b(E)	882	#5	30'-4"	
b1(E)	288	#6	30'-0"	
b2(E)	1130	#5	27'-8"	
c(E)	243	#5	17'-7"	
c1(E)	3	#5	17'-7"	
(2(E)	492	#5	1'-4"	L_
d(E)	768	#5	6'-4"	Δ
d1(E)	768	#5	8'-5"	Ň
e(E)	64	#4	28'-3"	
e1(E)	64	#4	19'-9"	
e2(E)	120	#4	16'-3"	
m(E)	48	#6	26'-1"	
m1(E)	120	#6	6'-4"	
m2(E)	24	#6	2'-5"	
m3(E)	24	#6	3'-0"	
s23(E)	168	#5	8'-6"	
524(E)	168	#5	12'-9"	<u> </u>
52 ((1)	+	<u> </u>	12 5	
v4(E)	196	#5	3'-1"	4
Reinfo	rcement	Bars,	lbc	198,060
Ероху	Coated		Lbs.	190,000
Concre			Cu. Yds.	842.8

		ILLINOIS	FED. AI	D PROJECT		
				CONTRAC	r no. e	6H15
55	[(32-3) HB-1] HBK		GRUNDY	173	98	
F.A.I. RTE.	SECTION		COUNTY	TOTAL SHEETS	SHEET NO.	

REVISED CHECKED - 11/3/20 REVISED

DRAWN

JA

_ _

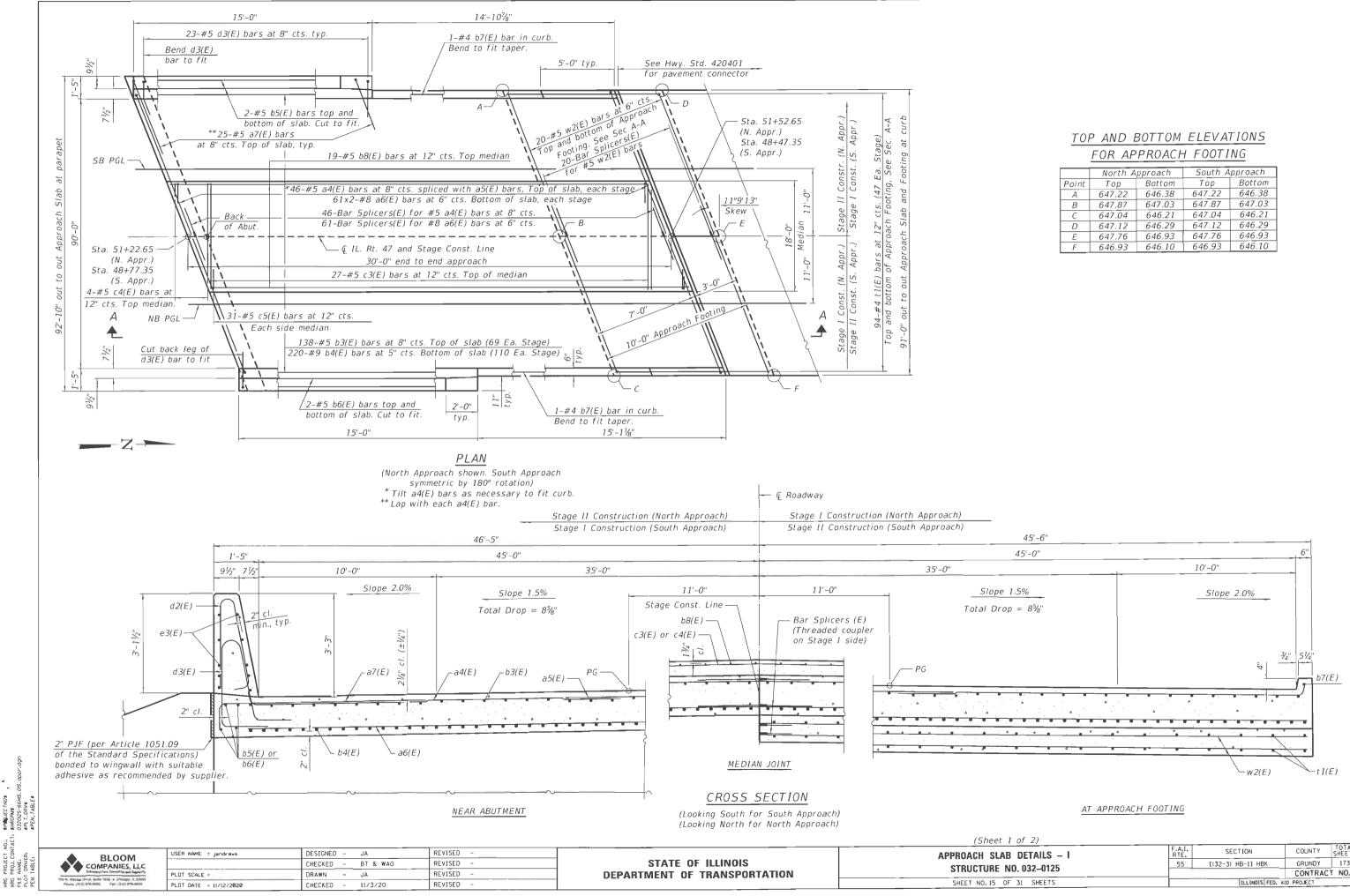
.

TNOS 1 66HI5_014_ V\$

PROJECT PROJ. CC NAME: DRIVER

PLOJ PEN PEN

100 N. Wacker Strive. Suite 1002 * Chicago. IL 6000 Phone: (312) 876-8500 Fax: (112) 876-9603

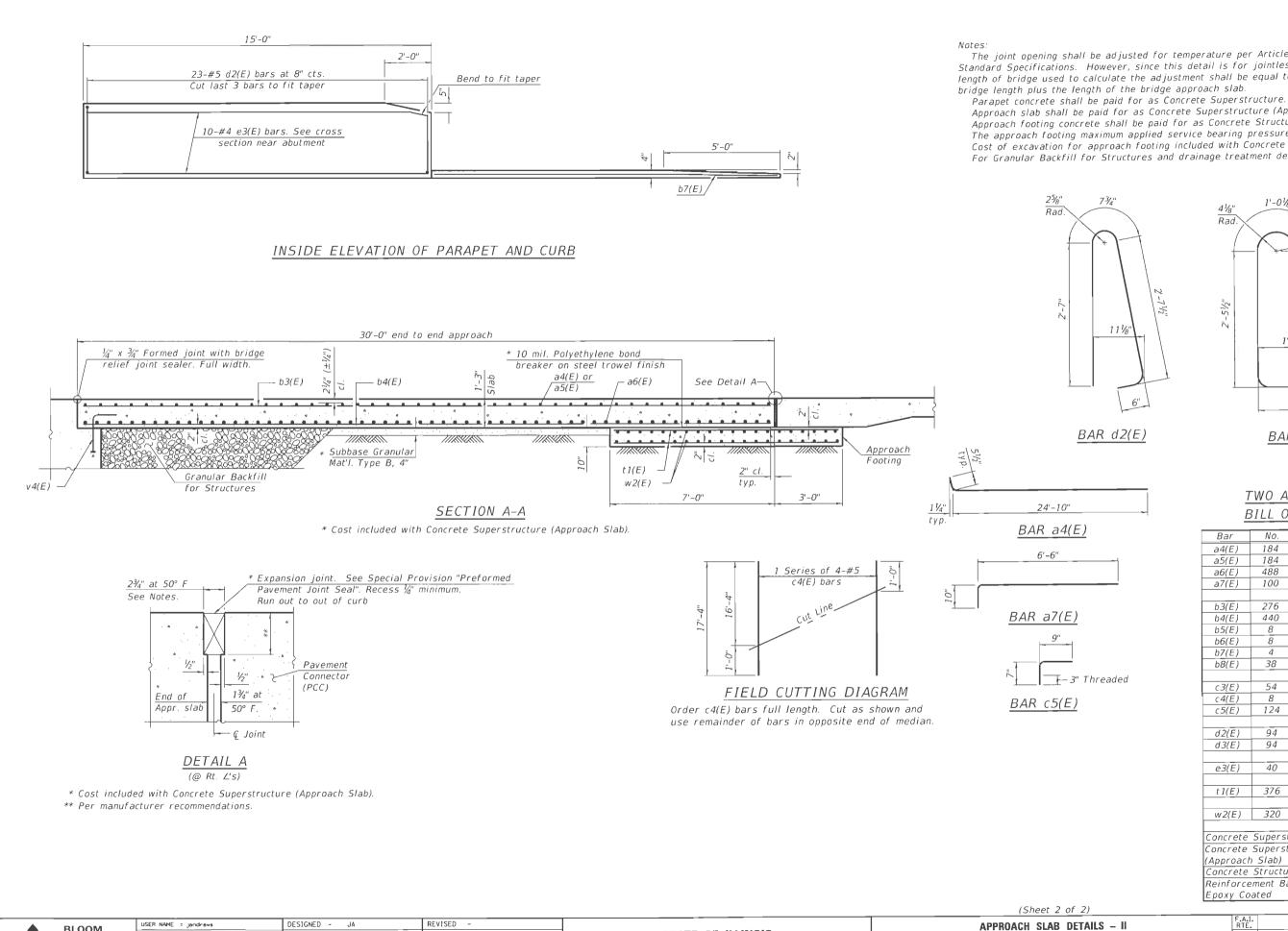

PLOT SCALE :

PLOT DATE = 11/11/2020

DEPARTMENT OF TRANSPORTATION

COUNTY TOTAL SHEETS NO. GRUNDY 173 99 [(32-3) HB-1] HBK 55 **STRUCTURE NO. 032–0125** CONTRACT NO. 66H15 SHEET NO. 14 OF 31 SHEETS ILLINDIS FED. AID PROJECT

See sheet 13 of 31 for superstructure details and Bill of Material. The s23(E) and s24(E) bars shall be placed parallel to the beams. Spacing for these bars shall be at right angles to the beams. The approach slab seat shall have a constant slope determined from


. d

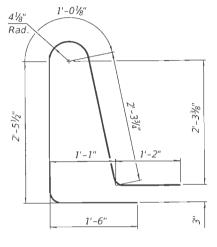
- - -

ТОР	AND	BOTTOM	ELEVATION.	5
F	OR A	PPROACH	FOOTING	

	North Approach		South Approach		
Point	Тор	Bottom	Тор	Bottom	
A	647.22	646.38	647.22	646.38	
В	647.87	647.03	647.87	647.03	
С	647.04	646.21	647.04	646.21	
D	647.12	646.29	647.12	646.29	
E	647.76	646.93	647.76	646.93	
F	646.93	646.10	646.93	646.10	

1 of 2)					
B DETAILS – I	F.A.I. RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.
	55	[(32-3) HB-1] HBK	GRUNDY	173	100
10. 032–0125	70		CONTRAC	T NO. (66H15
31 SHEETS		ILLINOIS FED. A	ID PROJECT		

USER NAME = jandrawa DESIGNED - JA **REVISED** BLOOM COMPANIES, LLC STATE OF ILLINOIS CHECKED - BT & WAO REVISED REVISED **DEPARTMENT OF TRANSPORTATION** PLOT SCALE = DRAWN JA ~ 150 N. Wygter Drive. Suite 1050 e. Chicago, IL 60500 Phose: (312) 878-9500 Fax: (312) 878-9600 HRC FILE FILE PLOT DATE = 2/1/2021 CHECKED -2/1/21 REVISED

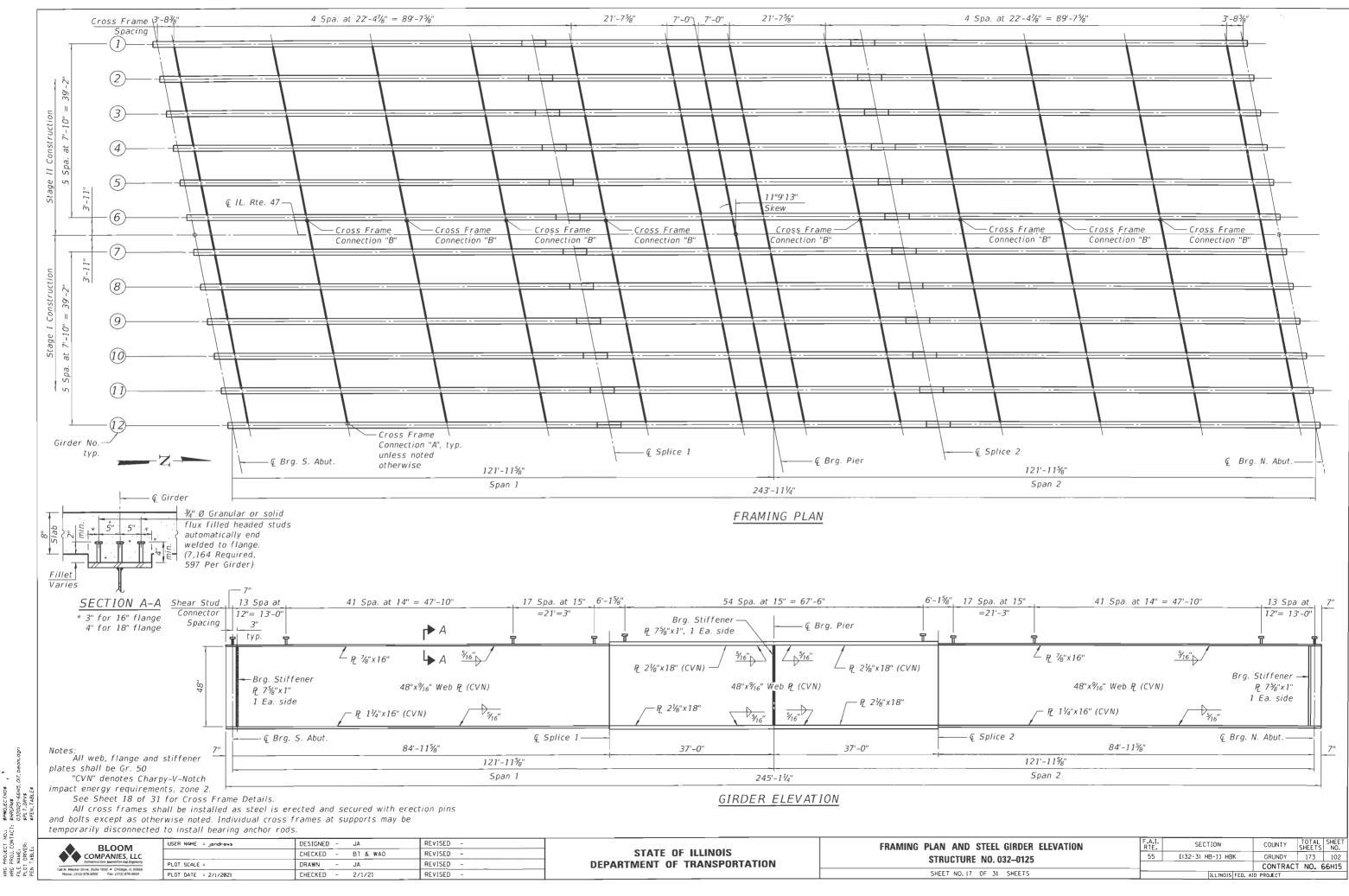

. <u>.</u>

. .

STRUCTURE N SHEET NO. 16 OF

The joint opening shall be adjusted for temperature per Article 520.04 of the Standard Specifications. However, since this detail is for jointless structures, the length of bridge used to calculate the adjustment shall be equal to half the total

Approach slab shall be paid for as Concrete Superstructure (Approach Slab). Approach footing concrete shall be paid for as Concrete Structures. The approach footing maximum applied service bearing pressure (Qmax) = 2.0 ksf. Cost of excavation for approach footing included with Concrete Structures. For Granular Backfill for Structures and drainage treatment details, see sheet 2 of 31.



BAR d3(E)

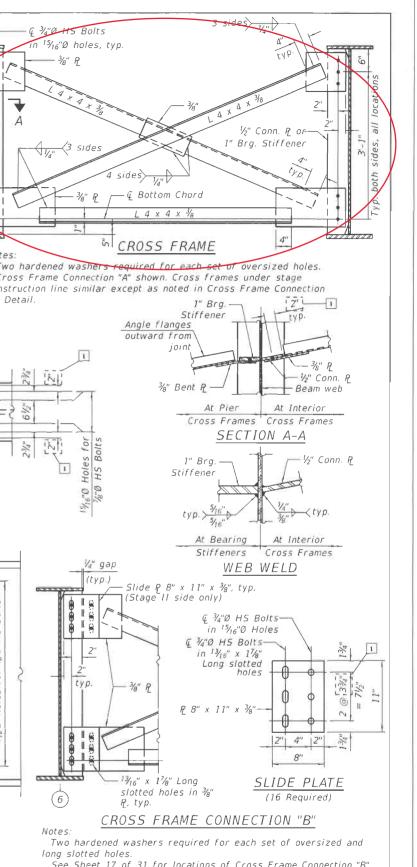
TWO APPROACHES BILL OF MATERIAL

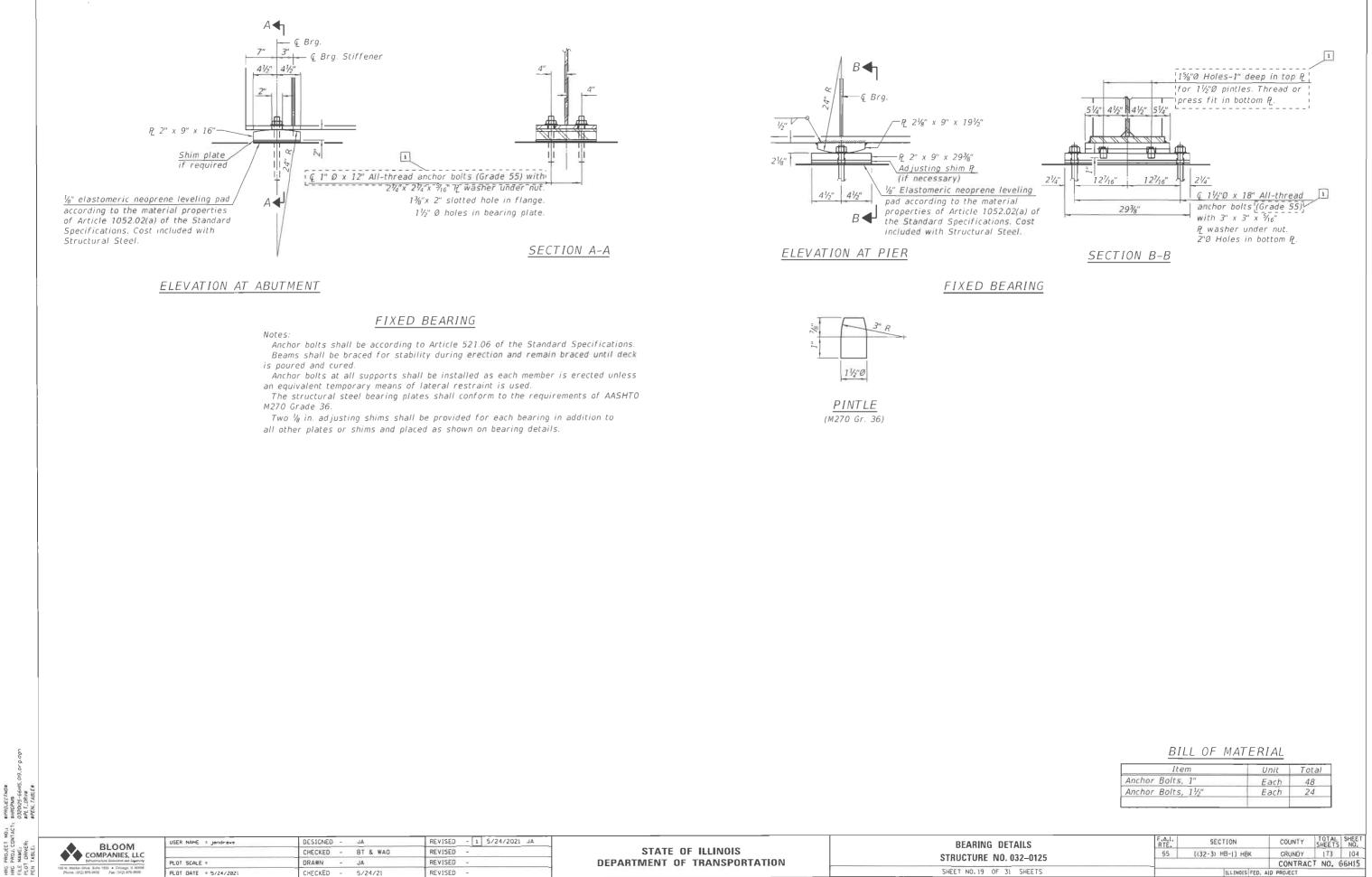
Bar	No.	Size	Length	Shape
a4(E)	184	#5	25'-4"	
a5(E)	184	#5	24'-10"	
a6(E)	488	#8	24'-10"	
a7(E)	100	#5	7'-4"	· · · · · · · · · · · · · · · · · · ·
b3(E)	276	#5	29'-8"	
b4(E)	440	#9	29'-8"	
b5(E)	8	#5	14'-6"	
b6(E)	8	#5	15'-0"	
b7(E)	4	#4	15'-0"	
b8(E)	38	#5	29'-9"	
c3(E)	54	#5	17'-7"	
c4(E)	8	#5	19'-4"	
c5(E)	124	#5	1'-4"	Γ
d2(E)	94	#5	6'-5"	
d3(E)	94	#5	8'-6"	<u> </u>
e3(E)	40	#4	14'-9"	
t1(E)	376	#4	10'-0"	
w2(E)	320	#5	24'-10"	
Concrete	Superst	ructure	Cu. Yd.	27.9
Concrete	Superst	ructure	Cu. Yd.	255.9
(Approach Slab)			<i>cu. ru.</i>	233.5
Concrete		es	Cu. Yd.	57.3
Reinforce	ement Ba	rs,	Pound	111.120
Ероху Сс	pated		Pound	111,120

2 of 2)					
b details – II	F.A.I. RTE.	F.A.I. SECTION		TOTAL SHEETS	SHEET NO.
	55	[(32~3) HB-1] HBK	GRUNDY	173	101
NO. 0320125			CONTRAC	T NO. 6	56H15
F 31 SHEETS		ILLINOIS FED. A	ID PROJECT		

. ÷

1

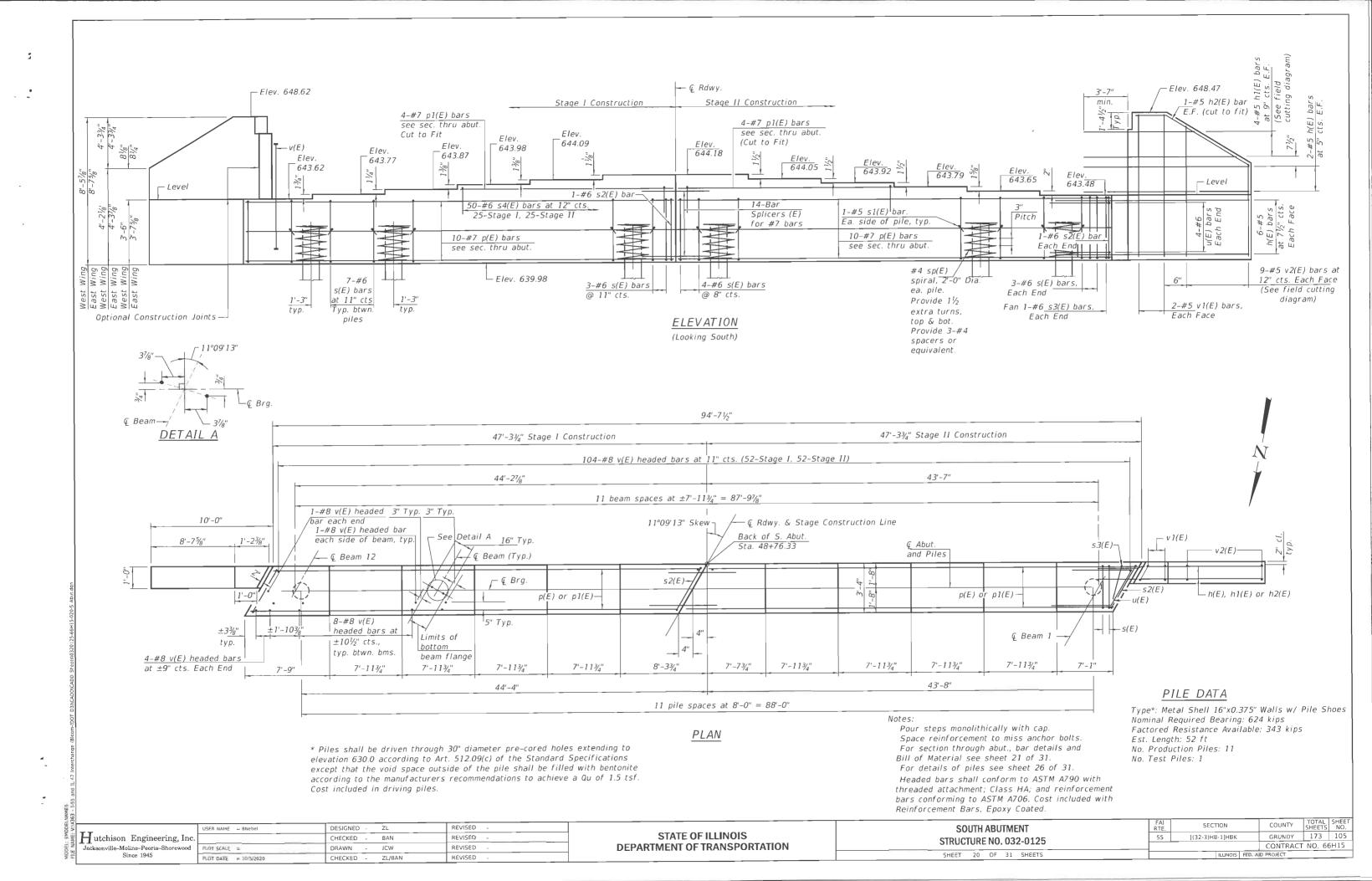

*0***** ິບູສ

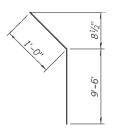

INTERIOR GIRDER MOMENT TABLE		Τ	ight fit	3/1"O HS Bolts 3 sides 1/1"
0.4 Sp. 1 or 0.6 Sp. 2 Pier 1s (in ^a) 25305 53265	Is, Ss: Non-composite moment of inertia and	section modulus of the typ		$h^{1}\overline{y}_{16}^{*}$ O holes, typ. $\frac{3}{7}h^{*}$ R
Ic(n) (in ⁴) 65361 - Ic(3n) (in ⁴) 48165 -	steel section used for computing fs(Service 11) due to non-composite dea	Total-Strength I, and Id loads (in 4 and in 3)	5/16" I I I I I I I I I I I I I I I I I I I	
Ic(cr) (in ⁴) – 60079	Ic(n), Sc(n): Composite moment of inertia and se	ction modulus of the steel Alt. c		1 at a start and a start a sta
Ss (in³) 1111 2039 Sc(n) (in³) 1521 -	and deck based upon the modular ra fs(Total-Strength I, and Service II)	n uncracked sections due		$\frac{3}{6}$ $\frac{3}$
Sc(3n) (in ³) 1401 -	to short-term composite live loads (Ic(3n), Sc(3n): Composite moment of inertia and see	n, and m, j.	Wold	1/2" Conn. R or 2"
<u>Sc(cr) (in³) - 2123</u> DC1 (k/) 1.05 1.22	and deck based upon 3 times the mo	dular ratio, "3n", used for	Detail	1" Brg. Stiffener
MDC1 ('k) 969 2649 DC2 (k/') 0.2 0.2	computing fs(Total-Strength I, and S sections, due to long-term composite	(superimposed) dead loads		4 sides
MDC2 ('k) 188.3 434.7	(in.ª and in.³). Ic(cr), Sc(cr): Composite moment of inertia and set		" Rad.	
DW (k/') 0.3 0.3 MDW ('k) 280 645.6	and longitudinal deck reinforcement,	used for computing fs		$\frac{1}{36}$ $\frac{1}{8}$ $\frac{1}{4}$ 1
LLDF 0.599 0.599 M ^k _k + IM ('k) 1811.1 2271.4	(Total-Strength I and Service II) in both short-term composite live loads			
Mu (Strength I) ('k) 5036.1 8798	(superimposed) dead loads (in.ª and DC1:Un-factored non-composite dead load	· · · · · · · · · · · · · · · · · · ·		CROSS FRAME
Øf Mn ('k) - 9761 fs DC1 (ksi) 10.5 15.6	MDC1: Un-facto DC2: Un-facto DC2: Un-facto		feners. Two har	dened washers required for each set of oversized holes.
fs DC2 (ksi) 1.6 2.5	wearing defined in the framing p	Ian, However, cross-frame		rame Connection "A" shown. Cross frames under stage on line similar except as noted in Cross Frame Connection
fs DW (ksi) 2.4 3.6 fs (½+1M) (ksi) 14.3 12.8	MDC2: Un-factd excludin	ssary for non-curved bridges	"B" Detail	
fs (Service II) (ksi) 33.1 38.4 0.95Rh Fyf (ksi) 47.5 47.5	DW: Un-factd since they are a second	lary member that is not	LD AND CLIP DETAILS	Angle flanges
fs (Total)(Strength 1) (ksi) 43.8 50.4	surface included in the rating.		op welds ¼" (±½") from edges : shown, typ.	outward from
Øf Fn (ksi) - - Vf (k) 29.3 39.6	future wearing surface only) dead lu MŁ+IM: Un-factored live load moment plus d			joint 3/4" R
	(kıp-ft.).	manic road anowance (impact)		WI Conn. R
Abut. Pier	u (Strength I): Factored design moment (kip-ft.). 1.25 (MDC1 + MDC2) + 1.5 MDW + 1.	75 ML + IM		3%" Bent P Beam web
Interior Exterior Interior Exterior LLDF 0.83 0.83 0.83 0.83	Øf Mn: Compact composite positive moment	capacity computed according $\geq =$	-++==================================	At Pier At Interior Cross Frames Cross Frames
0CF	to Article 6.10.7.1 or non-slender ne according to Article A6.1.1 or A6.1.2	(kip-ft).		SECTION A-A
RDC1 (k) 52.8 52.8 176.0 176.0 RDC2 (k) 9.2 9.2 31.9 31.9	fs DC1: Un-factored stress at edge of flang flange due to vertical non-composite	deed tends as astautated		122
RDW (k) 17.2 17.2 57.2 57.2	below (ksi).		$1\frac{34''}{3''=2'-3''} = \frac{3\frac{34}{4}}{3''=2'-3''} = \frac{3\frac{34}{4}}{3''=2'-3''} = \frac{3\frac{34}{4}}{3''=2'-3''}$	1" Brg V2" Conn. R Stiffener
R ½ + IM (k) 89.9 89.9 181.7 181.7 RTotal (k) 169.1 169.1 446.8 446.8	MDC1/ Snc fs DC2: Un-factored stress at edge of flang	e for controlling steel	6¾"	H Q
	flange due to vertical composite dea below (ksi).	d loads as calculated	(Tagana bathan (Jana)	5/16" N 1/4" tvo.
		plicable. e for controlling steel $P_{L} 1\%^{\prime\prime} \times 16^{\prime\prime} \times 5^{\prime} - 4\frac{1}{4}^{\prime\prime} (CVN) - Eiller P_{L} 1\%^{\prime\prime} \times 16^{\prime\prime} \times 7^{\prime} - 8^{\prime\prime}$	(Top and bottom flange plates) (40 bolts ea. side of splice)	5/16" - 38"
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	flange que lo vertical composite fut	ure wearing surface Filler P_1¼" x 16" x 2'-8" -		At Bearing At Interior Stiffeners Cross Frames
21/4	loads as calculated below (ksi). MDW/ Sc(3n) or MDW/ Sc(cr) as appl	icable.		Wa gap WEB WELD
	fs (L+IM): Un-factored stress at edge of flang flange due to vertical composite live	e for controlling steel		(typ.) Slide P 8" x 11" x 3/8", typ.
$\begin{array}{c} 4 \text{ Spa. at } \pm 21' - 2^{15} h_{16}'' \\ = 84' - 11^{5} h_{6}'' \\ = 84' - 11^{5} h_{6}'' \\ \end{array}$	calculated below (ksi).	(CVN, One Ea. Side)		(Stage II side only)
	$M_{1}^{L+IM} / Sc(n) \text{ or } M_{1}^{L+IM} / Sc(cr) \text{ as}$ s (Service II): Sum of stresses as computed below		Bolt	$2^{3}/2^{10}$ HS Bolts in $1^{3}/6^{10}$ Holes
121'-115%" 121'-115%"	fsDC1 + fsDC2 + fsDW + 1.3 fs(t + 0.95RhFyf: Composite stress capacity for Servi	M)	1/4" En SH Ø	E 3/10 HS Bolts
243'-11¼"	to Article 6.10.4.2 (ksi).		3. 3 ³	$ \begin{array}{c c} 2'' \\ \hline 1 \\ 2'' \\ \hline 2'' \\ 2'' \\ \hline 2'' \\ 2'' \\ \hline 2'' \\ $
CAMBER DIAGRAM	al)(Strength I): Sum of stresses as computed below section (ksi).	on non-compact PL %" x 1'-1¾" x 3 (CVN, One Ea. S		holes holes
	1.25 (fsDC1 + fsDC2) + 1.5 fsDW + Øf Fn: Non-Compact composite positive or r	1.75 fs(1+1M)	S pa.	
	Strength I loading according to Arti	le 6.10.7 or 6.10.8 (ksi).		₽ 8" × 11" × ¾"
	Vf: Maximum factored shear range in sp to Article 6.10.10.	an computed according	1	
		$P_{1} \frac{1}{3} \frac{3}{3} \times 7^{*} \times 5^{-4} \frac{1}{3} \frac{1}{3}$		
		(CVN, One Ea. Side)		13/16" × 17%" Long SLIDE PLATE
				slotted holes in $\frac{3}{8}$ " (16 Required)
TOP OF WEB	BELEVATIONS	Filler f 1/8" x 16" x 2'-8" -		CROSS FRAME CONNECTION "B"
	cation only)	₽ 11/6" × 16" × 5'-41/4" (CVN)-	41/4"	Notes:
	Girder 6 Girder 7 Girder 8 Girder 9 Girder 10 648.46 648.47 648.37 648.26 648.16	<u>Girder 11 Girder 12</u> 648.05 647.90	ELEVATION	Two hardened washers required for each set of oversized and long slotted holes.
Ç Splice 1 [648.07 648.23 648.35 648.47 648.59		<u>648.26</u> <u>648.11</u> <u>1</u> 648.25 <u>648.09</u>	(28 bolts ea. side of splice)	See Sheet 17 of 31 for locations of Cross Frame Connection "B". Bolts in the long slotted holes shall be finger tight until the Stage
	648.72 648.72 648.59 648.47 648.35	648.23 648.07	FIELD SPLICE DETAIL	II deck pour is completed. The slotted holes in the gusset plate sha be positioned to allow the bolts to move from one end of the slotted
Image: Constraint of the state of	<u>648.47</u> <u>648.46</u> <u>648.33</u> <u>648.20</u> <u>648.07</u>	647.94 647.77	(24 Required)	hole to the opposite end under deck load. The holes shall be
		Notes: All splice	plates, except fill plates, shall be M270 Gr.50.	positioned allowing maximum bolt displacement without laterally stressing the beams.
USER NAME : jandraus DESIGNED - JA			STRUCTURAL STEEL DETA	
COMPANIES, LLC CHECKED - BI		STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 032-012	5 1(32-3) HB-13 HBK GRUNDY 173 103 CONTRACT NO. 66H1
Plana, Ally Mineted Device 3 and Ally Mineted Plana, Ally Mineted	4/21 REVISED -		SHEET NO. 18 OF 31 SHEETS	ILLINOIS FED. AID PROJECT

.

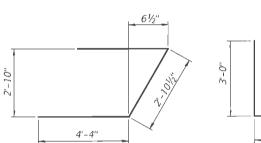
-

4



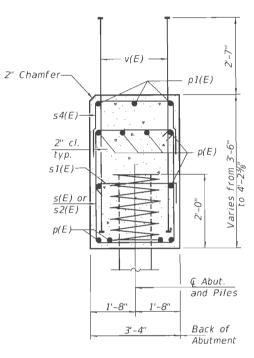

.

BILL	0F	MAT	ERIAL

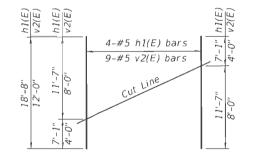

Item	Unit	Total	
Anchor Bolts, 1"	Each	48	
Anchor Bolts, 11/2"	Each	24	

TAILS	F.A.I. RTE.	SECTION	COUNTY	SHEETS	SHEET NO.
032–0125	55	[(32-3) HB-1] HBK	GRUNDY	173	104
			CONTRAC	T NO. (56H15
1 SHEETS		ILLINOIS PED.	ALD PROJECT		

BAR h2(E)



BAR u(E)

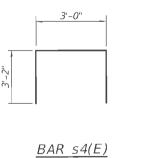

<u>s(E)</u> <u>s2(</u>E)

-2"

5

. .

.


1

1

FIELD CUTTING DIAGRAM Order h1(E) and v2 (E) full length. Cut as shown and use remainder of bars in opposite face. BAR s1(E)

3'-0''

51/2

3'-0" 3'-0½"

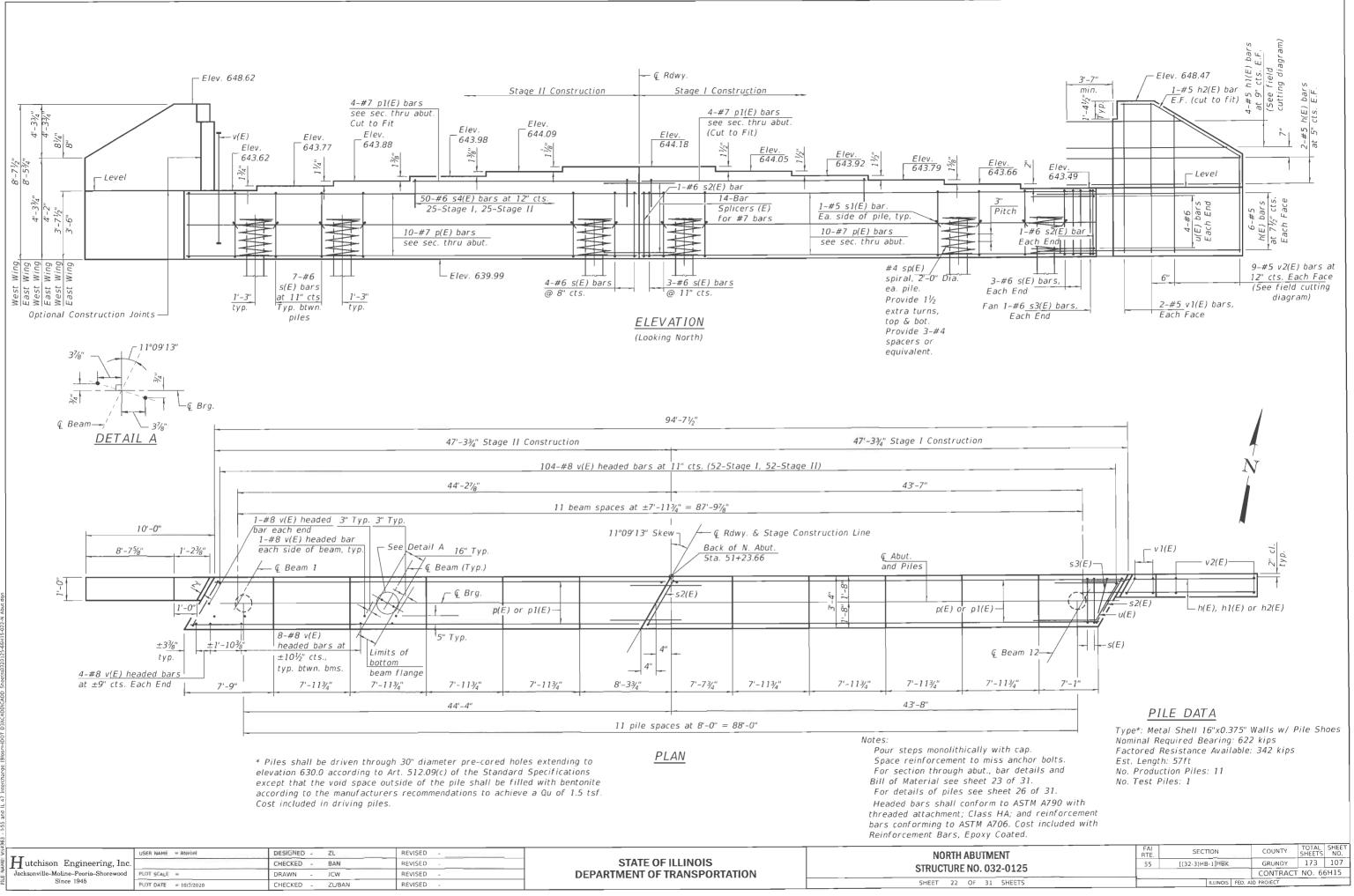
BAR s(E) & s2(E)

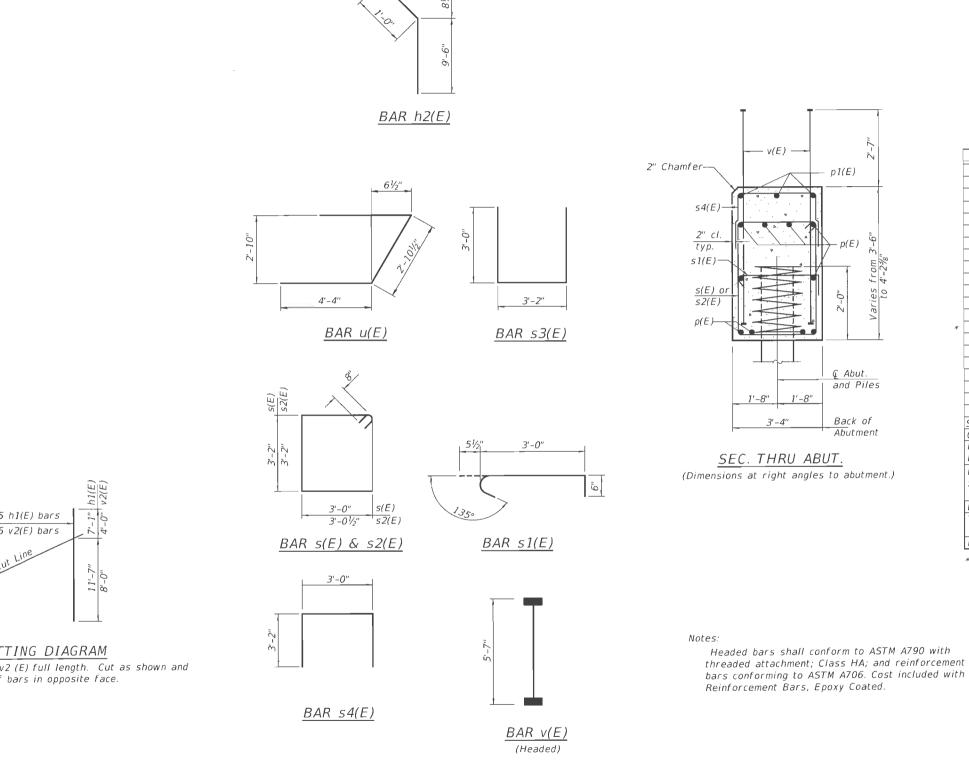
s(E)

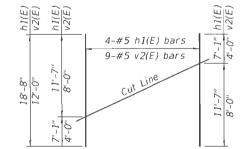
= s2(E)

Notes:

BAR v(E) (Headed)


MAMES 363 - 1-55									
Vala		USER NAME = BNebel	DESIGNED - ZL	REVISE	D -		SOUTH ABUTMENT DETAILS	RTE.	SECTION COUNTY SHEETS NO.
SM	utchison Engineering, Inc.		CHECKED - BA	AN REVISE	D -	STATE OF ILLINOIS	STRUCTURE NO. 032-0125	55	((32-3)HB-1]HBK GRUNDY 173 106
E N	Jacksonville-Moline-Peoria-Shorewood	PLOT SCALE =	DRAWN - JC	W REVISE	D -	DEPARTMENT OF TRANSPORTATION			CONTRACT NO. 66H15
M EL	Since 1945	PLOT DATE = 10/5/2020	CHECKED - ZL	_/BANREVISÉ	D -		SHEET 21 OF 31 SHEETS		ILLINOIS FED. AID PROJECT


SOUT	-Η λ	ABUTMENT
BILL	0F	MATERIAL


Bar	No.	Size	Length	Shape
h(E)	32	#5	12'-5"	
h1(E)	8	#5	18'-8''	
h2(E)	4	#5	10 <u>′-6</u> ′	
p(E)	20	#7	46 <u>'-11''</u>	
pl(E)	8	#7	23'-11"	
s(E)	83	#6	13'-8''	<u> </u>
s1(E)	24	#5	4'-0''	
s2(E)	3 2	#6	1 <u>3</u> '-9''	<u> </u>
s3(E)		#6	9'-2"	
54(E)	50	#5	9'-4"	
sp(E)	12	#4	2'-0"	MMM
u(E)	8	#6	11'-7"	
	226		C1 70	
V(E)	226	#8	5'-7"	
v1(E)	8	#5	8'-2"	
v2(E)	18	#5	12'-0"	
Struct	ICO EVC	avation	Cu. Yd.	370
Concre	te Stru	ictures	Cu. Yd.	48.6
	rcemen			
	Coated		Pound	9,660
. ,	hing Me			
Shell I	_		Foot	572
16"x0.				
Drivin	g Piles		Foot	572
Test F	Pile		Each	1
Metal	_			
Pile S	hoes _		Each	12

* Length is height of spiral.

Headed bars shall conform to ASTM A790 with threaded attachment; Class HA; and reinforcement bars conforming to ASTM A706. Cost included with Reinforcement Bars, Epoxy Coated.

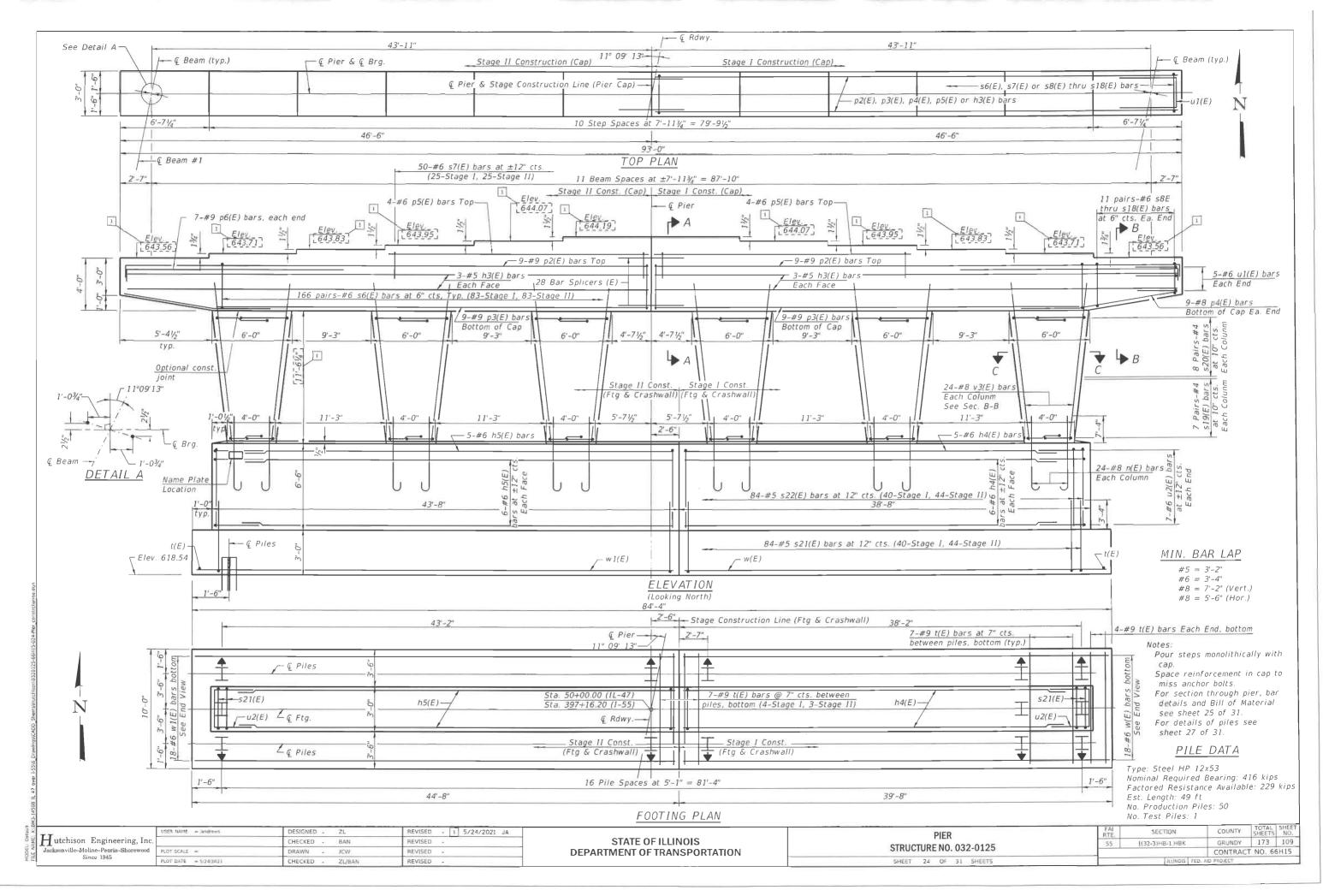
.

ړ ^ •

٠.

*

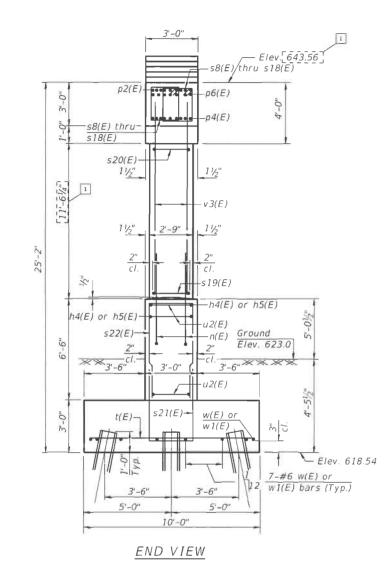
FIELD CUTTING DIAGRAM Order h1(E) and v2 (E) full length. Cut as shown and use remainder of bars in opposite face.

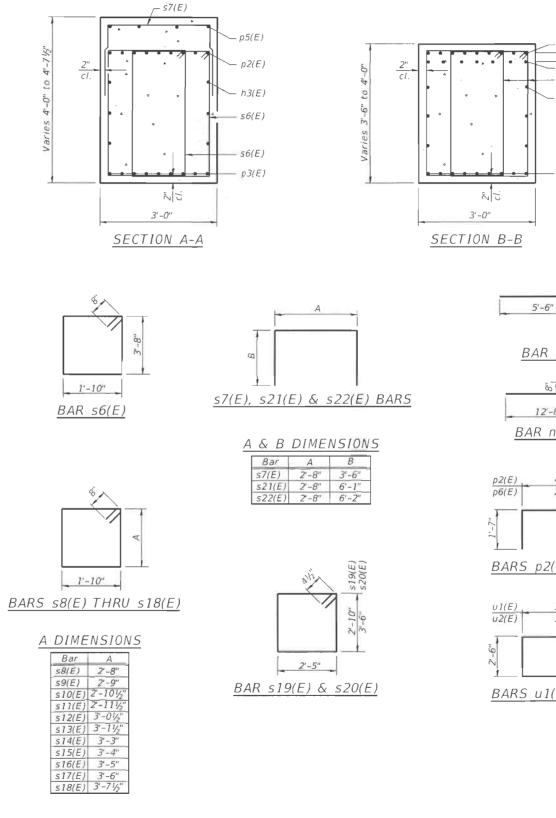

601		USER NAME - BNebet	DESIGNED -	ZL	REVISED -		NORTH ABUTMENT DETAILS	FAI SECTION	COUNTY TOTAL SHEET NO.
HLL SM	Hutchison Engineering, Inc.	PLOT SCALE	CHECKED -	BAN	REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 032-0125	55 [(32-3)HB-1]HBK	GRUNDY 173 108 CONTRACT NO. 66H15
MOD	Since 1945	PLOT DATE = 10/5/2020	CHECKED -	ZL/BAN	REVISED -		SHEET 23 OF 31 SHEETS	ILLINOIS FED. A	AID PROJECT

Varies from 3'-6" to 4'-23%"	2'-7"	
	from	to 4'-2%"

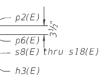
	NON	TT AL	JOINENT			
	BILL	OF M	IATERI.	AL		
Bar	No.	Size	Length	Shape		
h(E)	32	#5	12'-5"			
h1(E)	8	#5	18'-8''			
h2(E)	4	#5	10'-6''			
p(E)	20	#7	46'-11''			
p(E) p1(E)	20	#7	23'-11"			
$p_{I(E)}$	0	#1	23-11			
s(E)	83	#6	13'-8''			
s1(E)	24	#5	4'-0''			
s2(E)	3	#6	13'-9''			
s3(E)	2	#6	9'-2''			
s4(E)	50	#5	9'-4"			
sp(E)	12	#4	2'-0"	MMM		
u(E)	8	#6	11'-7''	\Box		
v(E)	226	#8	5'-7''	├		
v 1(E)	8	#5	8'-2''			
v2(E)	18	#5	12'-0"			
		avation		370		
	ete St <u>ru</u>		Cu. Yd.	48.6		
	rcemen Coated		Pound	9,660		
	hing Me					
Shell		- (2)	Foot	627		
16"x0						
Drivin	g Piles		Foot	627		
Test F			Each	1		
Metal	Shells			_		
Pile S	hoes		Each	12		

NORTH ABUTMENT


* Length is height of spiral.

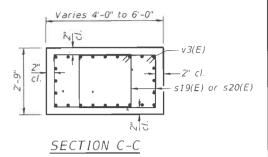


Notes:


.

Space reinforcement in cap to miss anchor bolts. Pour steps monolithically with cap. For details of piles, see sheet 27 of 31. Cut existing piles off at Elev. 616.54.

Analit Kant	USER HAME = andrews	DESIGNED ZL	REVISED . 1 5/24/2021 JA		PIER	FAI	SECTION	COUNTY TOTAL SHEET NO.
Hutchison Engineering, Inc.		CHECKED - BAN	REVISED -	STATE OF ILLINOIS		55	1(32-3)HB-1]HBK	GRUNDY 173 110
Jacksonville-Moline-Peeria-Shorewood	PLOT SCALE -	DRAWN - JCW	REVISED _	DEPARTMENT OF TRANSPORTATION	STRUCTURE NO. 032-0125			CONTRACT NO. 66H15
E Since 1946	PLOT DATE = 5/24/2021	CHECKED - ZL/BAN	REVISED _		SHEET 25 OF 31 SHEETS		ILLINOIS FED.	ALD PROJECT



BAR p4(E)

BARS p2(E) & p6(E)

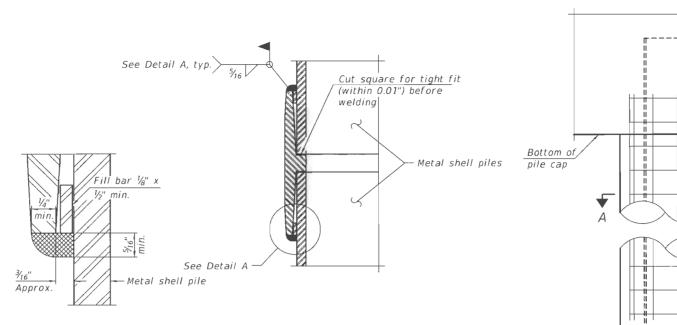
BARS u1(E) & u2(E)

BILL OF MATERIAL

Bar	No.	Size	Length	Shape
h3(E)	12	#5	46'-2"	
h4(E)	17	#6	38'-4''	
h5(E)	17	#6	43'-4''	·
n(E)	144	#8	13'-7"	C
p2(E)	18	#9	47'-9"	[
p3(E)	18	#9	41'-0"	
p4(E)	18	#8	10'-9"	
p5(E)	8	#6	23'-7"	
p6(E)	14	#9	22'-4"	
56(E)	332	#6	12'-4"	
s7(E)	50	#6	9'-8"	
58(E)	4	#6	10'-4"	
s9(E)	4	#6	10'-6"	
s10(E)	4	#6	10'-9"	9
s11(E)	4	#6	10'-11"	
512(E)	4	#6	11'-1"	
\$13(E)	4	#6	11'-3"	
s14(E)	4	#6	11'-6"	1
s15(E)	4	#6	11'-8"	N
s16(E)	4	#6	11'-10"	N
s17(E)	4	#6	12'-0"	1
s18(E)	4	#6	12'-3"	R
s19(E)	84	#4	11'-3"	1
s20(E)	96	#4	12'-7"	1
s21(E)		#5	14'-10"	- n
s22(E)	84	#5	15'-0"	
t(E)	120	#9	9'-8"	
u1(E)	10	#6	10'-2"	
u2(E)	14	#6	9'-2"	
v3(E)	144	#8	15'-0"	
10127	177		13 0	
w(E)	18	#6	39'-4"	
w1(E)		#6	44'-4"	
		avation	Cu. Yd.	65
	te Stru		Cu. Yd.	233.0
	rcemen			
	Coated		Pound	39,170
	hing St		-	- General
	x53 Pil		Foot	2,450
		62	Foot	2,450
	g Piles ile Stei	al	FUUL	2,430
HP 12		er	Each	1
nr 12.	200			1

٠

.

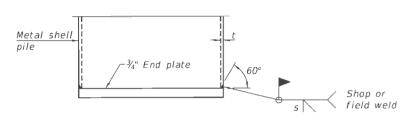

.

AMES 3 - 1-

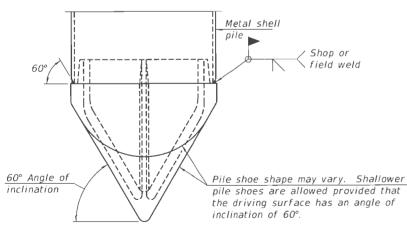
F_MS

METAL SHELL PILE TABLE

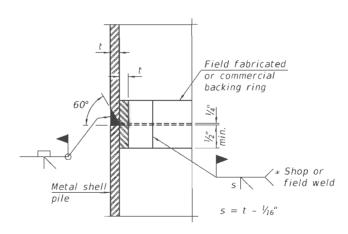
Designation and outside diameter	Wall thickness t	Weight per foot (Lbs./ft.)	Inside volume (yd.³/ft.)
PP12	0.250"	31.37	0.0267
PP14	0.250"	36.71	0.0368
PP14	0.312"	45.61	0.0361
PP16	0.312"	52.32	0.0478
PP16	0.375"	62.64	0.0470


DETAIL A

Notes: The 1/8" x 1/2" min. fill bar may be constructed of


2 bars with a 1/8" max. gap between them.

Pile segments shall be driven to solid contact with splicer before welding.


$5 = t - \frac{1}{16''}$

END PLATE ATTACHMENT

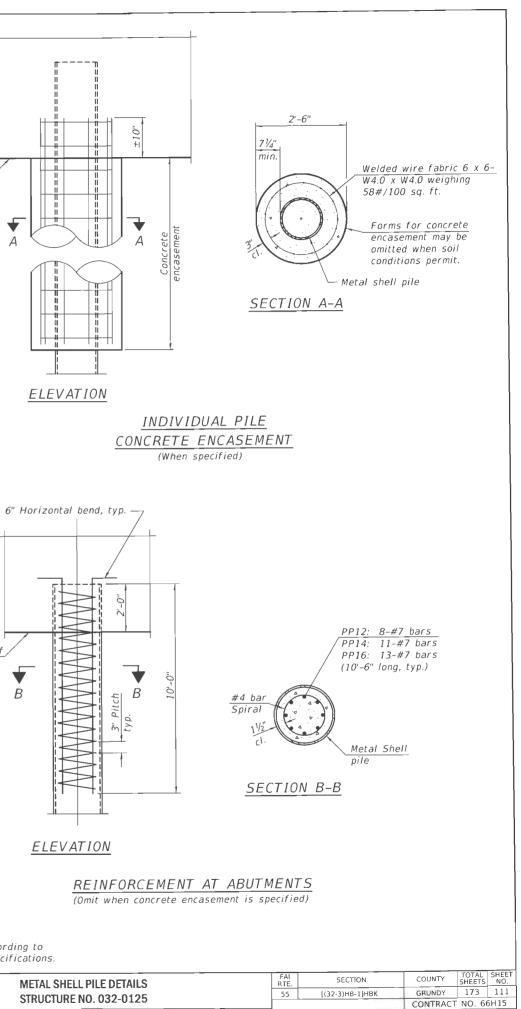
PILE SHOE ATTACHMENT

(When called for on the plans, the Contractor shall furnish metal shell pile shoes consisting of a single piece conical pile point as shown. The pile shoes shall be cast in one piece steel according to either ASTM A 148 Grade 80-50 or AASHTO M 103 Grade 65-35 and shall provide full bearing over the full circumference of the metal shell pile. The pile shoe shall have tapered leads to assure proper alignment and fitting and shall be secured to the pile with a circumferential weld).

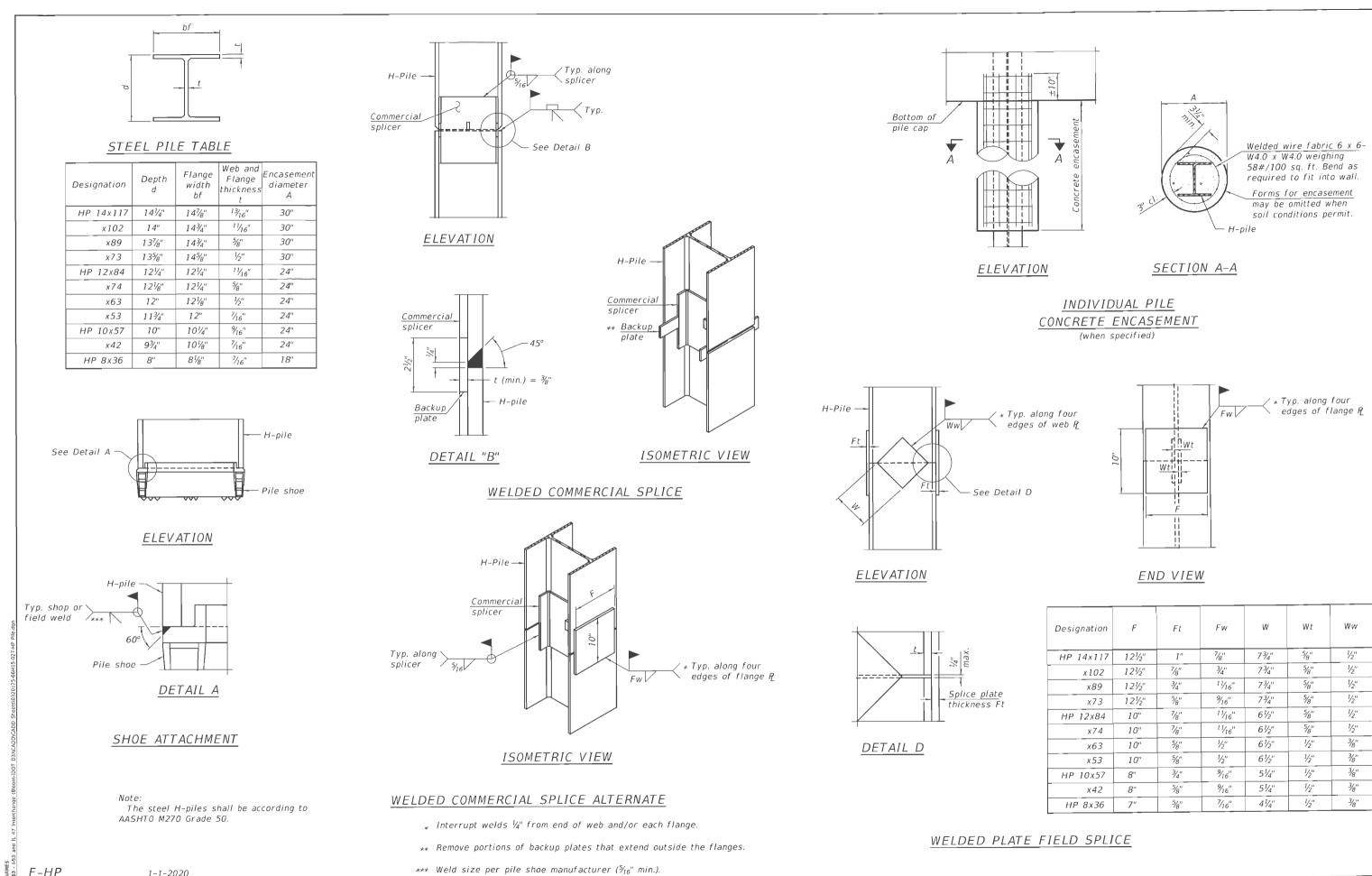
COMPLETE PENETRATION WELD SPLICE

* Field fabricated backing ring may be made from pile shell by removing segment to allow reducing circumference and vertically rejoin with partial joint penetration weld.

R


ELEVATION

Note: The metal shell piles shall be according to Article 1006.05 of the Standard Specifications.


MAN	F-MS	1-1-2020			Affilie 1000.05	
VCIA		USER NAME = BNIPDO	DESIGNED - 8AN	REVISED -		METAL SHELL PILE
S ME:	H utchison Engineering, Inc.		CHECKED - ZL	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 03
E N		PLOT SCALE =	DRAWN - JCW	REVISED -	DEPARTMENT OF TRANSPORTATION	51K0C10KL NO. 02
Ж С	Since 1945	PLOT DATE = 10/5/2020	CHECKED - BAN/ZL	REVISED -		SHEET 26 OF 31

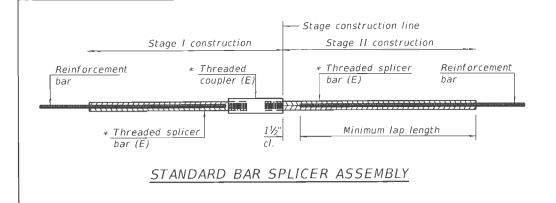
Bottom of

abutment

31 SHEETS ILLINOIS FED. AID PROJECT

38	1 111	1-1-2020					
V:/4		USER NAME = BNebel	DESIGNED -	BAN	REVISED -		HP PILE DET
ME	Hutchison Engineering, Inc.		CHECKED -	ZL	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 0
	Jacksonville-Moline-Peoria-Shorewood	PLOT SCALE =	DRAWN -	JCW	REVISED -	DEPARTMENT OF TRANSPORTATION	
MO	Since 1945	PLOT DATE = 10/5/2020	CHECKED -	8AN/ZL	REVISED -		SHEET 27 OF

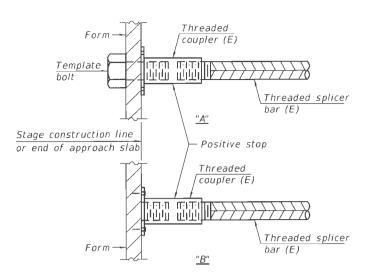
.


.

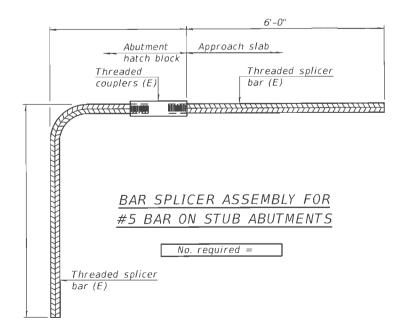
2

.

Designation	F	Ft	Fw	W	Wt	Ww
HP 14x117	121/2"	1"	7/8"	7 <i>¾</i> ″	5/8"	1/2"
x102	12½"	7/8"	3/4"	73/4"	5/8"	1/2"
x89	12½"	3/4"	¹¹ / ₁₆ "	7 <i>³</i> /4"	5/8"	1/2"
x73	121/2"	5/8"	⁹ /16"	73/4"	5/8"	1/2"
HP 12x84	10"	7/8"	11/16"	6½"	5/8''	1/2"
x74	10"	7/8"	11/16"	6½"	5/8"	1/2"
x63	10"	5/8"	1/2"	6½"	1/2"	<i>³∕</i> 8″
x53	10"	5/8"	1/2"	6½"	1/2"	3/8"
HP 10x57	8"	3/4"	9/16"	5¼"	1/2"	3/8"
x42	8"	5/8"	9/16"	51/4"	1/2"	3/8"
HP 8x36	7"	5/8''	7/16"	4¼"	1/2"	3/8''


ETAILS 0. 032-0125		FAI RTE.	SECTION	COUNTY	TOTAL SHEETS	SHEET NO.	
		55	[(32-3)HB-1]HBK	GRUNDY	173	112	
				CONTRAC	F NO. 60	5H15	
31	SHEETS			ILUNOIS FED	. AID PROJECT		

Threaded splicer bar length = min. lap length + $1\frac{1}{2}$ " + thread length


* Epoxy not required on Bar Splicer Assembly components used in conjunction with black bars.

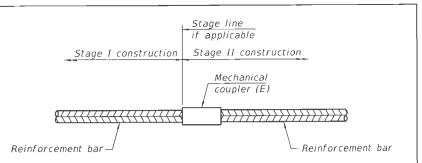
Location	Bar size	No. assemblies required	Minimum Iap length
Superstructure	#5	866	3'-6"
Superstructure	#6	24	4'-4"
Approach Slabs	#5	172	3'-6"
Approach Slabs	#8	122	5'-11"

INSTALLATION AND SETTING METHODS

"A" : Set bar splicer assembly by means of a template bolt. "B" : Set bar splicer assembly by nailing to wood forms or cementing to steel forms. (E) : Indicates epoxy coating.

5 FROJECT NO.: SPHOLECTNOS 5 FROJ. CONTACT: SHRGPMS E NAME: 10 DRVER: 201 DRVER: 201

HRG HRG FILE PLOT PEN


. 028

1

.

-

BSD-1	2-17-2017								
	USER NAME = jondrawa	DESIGNED -	JA	REVISED -		BAR SPLICER ASSEMBLY AND MECHANICAL SPLICER DETAILS	RTE.	SECTION	COUNTY TOTAL SHEET SHEETS NO.
		CHECKED -	BT & WAO	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 032–0125	55 E(32	-3) HB-1] HBK	GRUNDY 173 113
Entracting Transition and Engenity	PLOT SCALE =	DRAWN -	JA	REVISED -	DEPARTMENT OF TRANSPORTATION				CONTRACT NO. 66H15
Press (312) 876-8000 Fax: (312) 876-8000	PLOT DATE = 11/11/2020	CHECKED -	11/3/20	REVISED -		SHEET NO. 28 OF 31 SHEETS		ILLINOIS FED. A	ID PROJECT

STANDARD MECHANICAL SPLICER

Location	Bar size	No. assemblies required

NOTES

Splicer bars shall be deformed with threaded ends and have a minimum 60 ksi yield strength.

All reinforcement shall be lapped and tied to the splicer bars. Bar splicer assemblies shall be epoxy coated according to the requirements for reinforcement bars. See Section 508 of the Standard Specifications. See approved list of bar splicer assemblies and mechanical splicers for alternatives.

×.

÷ t

. 6

Illinois D	epartment portation	SOIL BORING LOG	Page <u>1</u> of <u>2</u>
Division of Highways Illinois Department of			Date 10/25/17
ROUTE IL 47	DESCRIPTION	IL 47 over I-55 Interchange at Dwight	LOGGED BY Larry Myers
SECTION(32-3)HB-	ES LOCATION	NE 1/4, SEC. 33, TWP. 31N, RNG. 7E, 3 rd PM, Latitude 41.117773, Longitude -88.413854	,
COUNTY Grundy	DRILLING METHOD	Hollow Stem Auger HAMMER TYP	PE CME Automatic
STRUCT. NO. 032-007 Station 50+00.01 BORING NO. 01 (N.E. Qual	— E L C P O S	O Stream Bed Elev.	t E L C O P O S I T W S
Station51+69 Offset5.2 ft Rt Ground Surface Elev64	H S Q	T First Encounter 599.1 ft Upon Completion 601.6 ft	t⊈ t (ft) (/5") (tsf) (%)
Augered Bituminous Shoulder, Gray & Brown Silty Clay Loam Fill	ган	Very Stiff Brown & Gray Silty Clay Loam Till Fill (continued)	4 5 3.9 17 8 S
Very Stiff Gray Silty Clay Loan Fill	639.14 Till 4 4 2.0 7 P		4 5 3.5 21 7 S
	<u>-5</u> 4 4 3.5		-25 16.14 4 5 3.0 22
	634.64	61	9 P
Hard Gray Silty Clay Loam Till	-ill4 5 4.0 7 B		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-10 3 6 4.4 12 S	Hard Brown Silty Clay Loam Till	2.14 5 5 8 9.2 17 12 S
		16	
Very Stiff Brown & Gray Silty C Loam Till Fill	627.14 ay3 4 3.5 5 s	Hard to Very Stiff Gray Silty Clay Loam Till	7.14 -35 5 7 4.1 21 9 S
is 032-0079.GPJ IL_DOT	4	20	4
SOIL BORING			7 S √ -40

Division of Highways Illinois Department of Transport		SCRI	PTION	I	
SECTION [(32-3)HB-1]ES		_ L	.OCAT		N
COUNTY Grundy DRIL	LING	ME	тнор		
STRUCT. NO. 032-0079 Station 50+00.00 BORING NO. 01 (N.E. Quad.) Station 51+69	 	D E P T H	B L O W S	U C S Qu	
Offset 5.2 ft Rt. Ground Surface Elev. 641.64	ft	(ft)	(/6")	(tsf)	
Hard to Very Stiff Gray Silty Clay Loam Till (continued) Fine Sand Layer @ 40 Ft. with			4 5 8	3.7 S	
Free Water	2		1		
			1 5	3.0 P	
		-45	6	4.1	
			9	4.1 S	
		_	6	4.3	
			9 9	4.3 S	
		-50	8		
		_	9 12	5.6 S	
			7		
			8 10	4.5 S	
		-55	7		
		_	8 10	4.7 S	
		_	6		
			7 9	4.5 S	
		-60			

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

BBS, form 137 (Rev. 8-99)

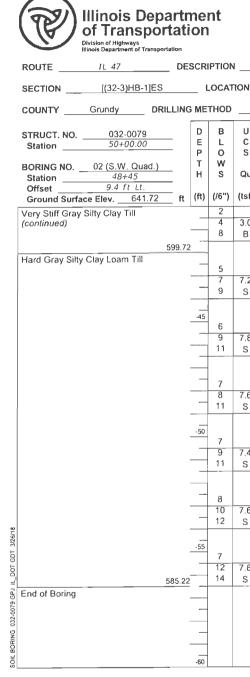
The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

	USER NAME = BNebel	DESIGNED - BAN	REVISED -		SOIL BORING LOGS	FAI SECTION	COUNTY TOTAL SHEET SHEETS NO.
Hutchison Engineering, Inc		CHECKED - ZL	REVISED -	STATE OF ILLINOIS	STRUCTURE NO. 032-0125	55 [(<u>32-3)HB-</u> 1]HBK	GRUNDY 173 114
Jacksonville-Moune-Peoria-Shorewood Since 1945	PLOT DATE = 10/5/2020	CHECKED - BAN/ZL	REVISED -	DEPARTMENT OF TRANSPORTATION	SHEET 29 OF 31 SHEETS	ILLINOIS FED. AID	D PROJECT

SOIL BORING LOG

Page <u>2</u> of <u>2</u> Date _____10/25/17____

IL 47 over I-55 Interchange at Dwight LOGGED BY Larry Myers


			<u> </u>					
DN _	NE 1/4	I, SEC. 33, TWP. 31N, I de 41.117773, Longitu	RNG. 7E, 3 rd F	PM				
	Hol	low Stem Auger	HAMMER 1	YPE	(CME A	utoma	tic
U C S Qu (tsf)	M O I S T (%)	Stream Bed Elev. Groundwater Elev.: First Encounter Upon Completion	599.1 601.6		D E P T H	B L O W S (/6")	U C S Qu (tsf)	M O I S T (%)
(151)	(/0)	After Hrs. Hard to Very Stiff Gra	y Silby Clay	ft	()	7	(101)	(,
3.7 S	20	Loam Till (continued) End of Boring		580.14		7 8	4.5 S	15
3.0 P	20							
4.1	16				-65			
S								
4.3 S	15				-70			
5.6 S	15							
4.5 S	15							
4.7 S	14				-75			
4.5	15							
S					-80			

BBS, form 137 (Rev. 8-99)

Page	<u>1</u>	of	2

SOIL BORING LOG Division of Highways Illinois Department of Transportation Date 10/26/17 ROUTE IL 47 DESCRIPTION IL 47 over I-55 Interchange at Dwight LOGGED BY Larry Myers LOCATION <u>SE 1/4, SEC. 33, TWP. 31N, RNG. 7E, 3rd PM,</u> Latitude 41.116896, Longitude -88.414099 [(32-3)HB-1]ES SECTION HAMMER TYPE CME Automatic Hollow Stem Auger Grundy DRILLING METHOD COUNTY U D В U М D в Μ 032-0079 STRUCT. NO. Surface Water Elev C S 1 С 0 Е L 0 E Station Stream Bed Elev. ft 0 s Ρ 0 P w Т W S S BORING NO. 02 (S.W. Quad.) Groundwater Elev.: Qu т H S Qu H S Т Station 48+45 First Encounter Dry ft Offset 9.4 ft Lt Upon Completion Dry ft ft (ft) (/6") (tsf) (%) (ft) (/6") (tsf) (%) Ground Surface Elev. 641.72 After Hrs. 3 Hard Gray & Brown Silty Clay Augered Bituminous Shoulder, Gray & Brown Silty Clay Loam Till Loam Till Fill (continued) 6.6 6 Fill S 639.22 5 Hard Gray & Brown Silty Clay Loam Till Fill 6 4.0 6.2 15 19 9 9 Ρ S -5 616.72 -25 5 Hard Black Silty Clay Loam with 4.5 22 6 4.0 16 Organics 8 8 P 11 Р 614.72 Very Stiff Gray & Brown Silty Clay 4 Loess 5 4.0 18 2.0 21 7 P 5 Р 612.22 - 10 Hard Brown & Gray Silty Clay -30 4 Loam Till 19 4 4.1 20 6.8 7 B 9 S

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

4

6 4.4 17

6

3

8 S

-20

-15

9 S

12 S

8 4.7 17

5 6.2 18

BBS, form 137 (Rev. 8-99)

-40

8

6

9 7.2 19

4

6

-35

604.72

Very Stiff Gray Silty Clay Till

10 7.2 18

12 S

14 S

3.0 23

В

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

DEL: \$MODELN E NAME: V:\436	Hutchison Engineering, Inc. Jacksonville-Moline-Peoria-Shorewood	USER NAME = BNebel PLOT SCALE =	DESIGNED - CHECKED - DRAWN -	BAN ZL JCW	REVISED - REVISED - REVISED -	STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION	SOIL BORING L Structure No. 03
NO NO	Since 1945	PLOT DATE = 10/5/2020	CHECKED -	BAN/ZL	REVISED -		SHEET 30 OF 31

. Ŧ

C.

4

- ii

SOIL BORING LOG

Page 2 of 2

Date 10/26/17

IL 47 over I-55 Interchange at Dwight

LOGGED BY Larry Myers

SE 1/4, SEC. 33, TWP. 31N, RNG. 7E, 3' ^d PM, Latitude 41.116896, Longitude -88.414099										
	Hol	low Stem Auger	_ HAMMER T	YPE _	CME Automatic					
J 2 3	M O 1	Surface Water Elev. Stream Bed Elev.		ft ft						
u	S T		Dry Dry	ft ft						
sf)	(%)	After Hrs.		ft						
0	15									
2	13									
8	13									
6	13									
4	14									
6	13									
8	13									

COUNTY TOTAL SHEET SHEETS NO. SECTION G LOGS RTE. GRUNDY 173 115 55 [(32-3)HB-1]HBK

BBS, form 137 (Rev. 8-99)

032-0125 CONTRACT NO. 66H15 31 SHEETS ILLINOIS FED. AID PROJECT

Division of Highways Hinois Department of Transportation DESCRIPTION IL 47 ROUTE [(32-3)HB-1]ES LOCATIO SECTION DRILLING METHOD Grundy COUNTY D В 032-0079 STRUCT. NO. Е L Station 50+00.00 P 0 Ŧ W BORING NO. 03 (Center Pier)

Illinois Department

of Transportation

R

н S 50+23 Station 43.2 ft Rt. Offset ft (ft) (/6") Ground Surface Elev. 617.41 Hard Gray Silty Clay Loam Till -Very Monolithic (continued) 6 8 10 10 -45 5 10 6 10 -50 6 10 6 8 10 -55 10

The Unconfined Compressive Strength (UCS) Failure Mode is indicated by (B-Bulge, S-Shear, P-Penetrometer) The SPT (N value) is the sum of the last two blow values in each sampling zone (AASHTO T206)

ISER NAME - BNebel DESIGNED 8AN REVISED SOIL BORIN STATE OF ILLINOIS Hutchison Engineering, Inc CHECKED Ζl REVISED STRUCTURE NO acksonville-Moline-Peoria-Shorewood Since 1945 DEPARTMENT OF TRANSPORTATION REVISED LOT SCALE = DRAWN JCW SHEET 31 OF PLOT DATE = 11/11/2020 CHECKED BAN/Z REVISED

î

Ľ, ~ ä

SOIL BORING LOG

Page <u>2</u> of <u>2</u>

Date 10/30/17

IL 47 over I-55 Interchange at Dwight LOGGED BY Larry Myers

ON _	SE 1/4, SEC. 33, TWP. 31N, RNG. 7E, 3 rd PM, Latitude 41,117318, Longitude -88,413775								
		low Stem Auger	CME Automatic						
U C S Qu	M O I S T	Surface Water Elev. Stream Bed Elev. Groundwater Elev.: First Encounter	599.9	_ ft _ ft 	D E P T H	B L O W S	U C S Qu	M O I S T	
(tsf)	(%)	Upon Completion After Hrs.	601.4	ft⊻ ft	(ft)	(/6'')	(tsf)	(%)	
5.9 S	14	Hard Gray Silty Clay Very Monolithic (cont		555.91		6 9 10	5.7 S	15	
5.7 S	16				-65				
5.7 S	16								
5.7 S	15					ſ			
5.7 S	15				-70				
5.7 S	15				-75				
5.7 S	15			-					
				-	-80				

BBS, form 137 (Rev. 8-99)

ING LOGS 10. 032-0125		SECTION COUNTY		COUNTY	TOTAL SHEETS	SHEET NO.
		[(32-3)HB-1]HBK		GRUNDY	173	116
				CONTRACT	NO. 66	5H15
F 31 SHEETS		ILLINOIS	FED. A	D PROJECT		