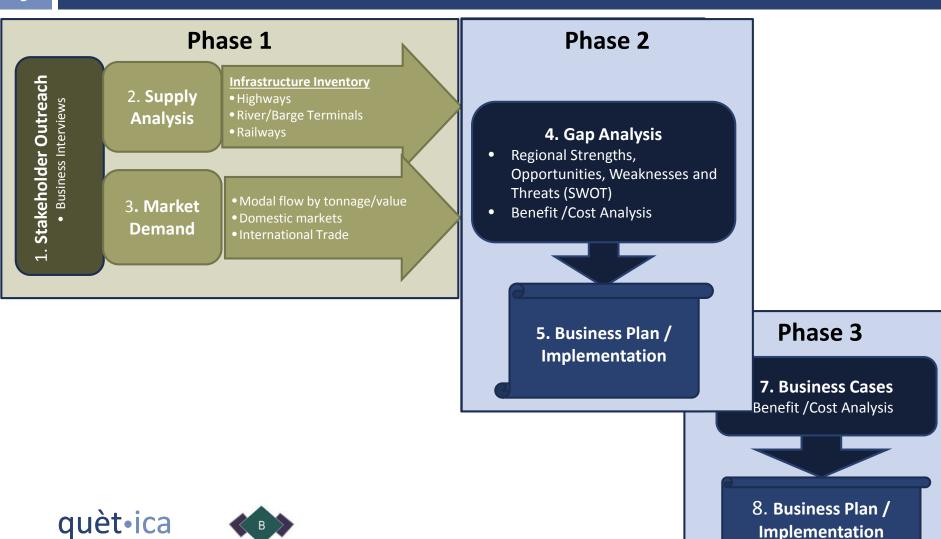


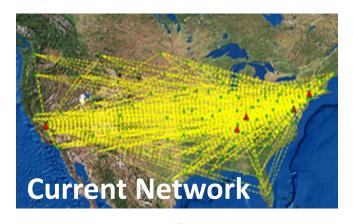
Port Market Demand and Transportation Impact Study: Overview and Findings

Presentation to the Illinois Freight Advisory Council

July 26, 2018

Mid-America Intermodal Port Authority

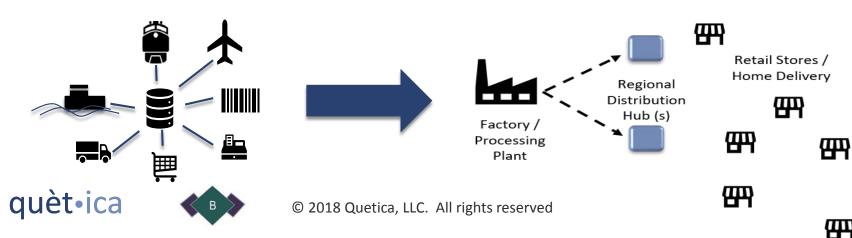

- A three state compact
 - Illinois
 - lowa
 - Missouri
- 26 counties
- Catalyst for economic growth
- Unsuccessful in federal grant applications to develop a new river port



3

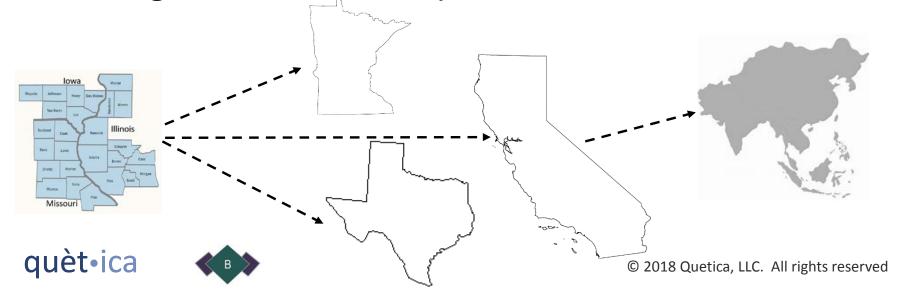
What is Optimization Modeling?

- A math approach for finding the "best" solution
- A common practice in private sector transportation
 - Shippers use optimization to lower supply chain costs
 - Carrier's apply optimization to routing issues
 - Terminals use optimization to improve operations


Private Sector Optimization

毌

毌

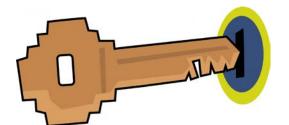

- Private firms rely on "in-house" data to run optimization
 analyses to reduce costs and improve customer service:
 - Transportation Management System data (TMS)
 - Customer volumes by SKU (Demand)
 - Warehouse/inventory / transloading costs, etc.
 - Product/ customer metrics
 - Modes and lanes used (Network)

Public Sector Freight Planning

- FAF Zone or state to state domestic flows
 - 2-digit STCG or STCC
 - Tonnage and value
 - 6 primary domestic mode/mode combinations
- □ Foreign trade 8 country zones

Integrated Supply Chain/Freight Planning

 Private companies look at only <u>their</u> data and only see solutions affecting <u>their</u> supply chain


 Public agencies look at macro data for trade relationships/mode share/etc., which is difficult to translate to project level decisions

Integrating commodity flow data with private shipment data enables optimization to identify opportunities across industries, across modes, and across public/private sectors

Integrating Public & Private Data

Freight Analysis Framework (FAF-4)

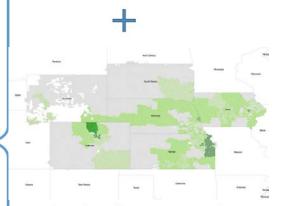
Reports commodity origin/ destination (O/Ds) by tonnage and value for 132 domestic regions on 43 commodities & 7 modal categories.

Foreign Trade detailed import/ shipments

quèt•ica

Quetica provides unparalleled knowledge of freight data; using both public and private sources

Customized Freight Data Solutions


County / TAZ **Commodity Flows**

Equipment type from regional data sample

Meaningful performance metrics

Quetica's Shipment Data Warehouse: De-sensitized

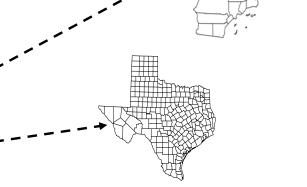
private shipment data and supply chain benchmarks.

Regional Business Data and Analytics: Using our history and experience Quetica works with private sector companies to assemble freight document samples from the region under NDA.

export data provides better accuracy on true origin and destination of international

Mid-America Optimization

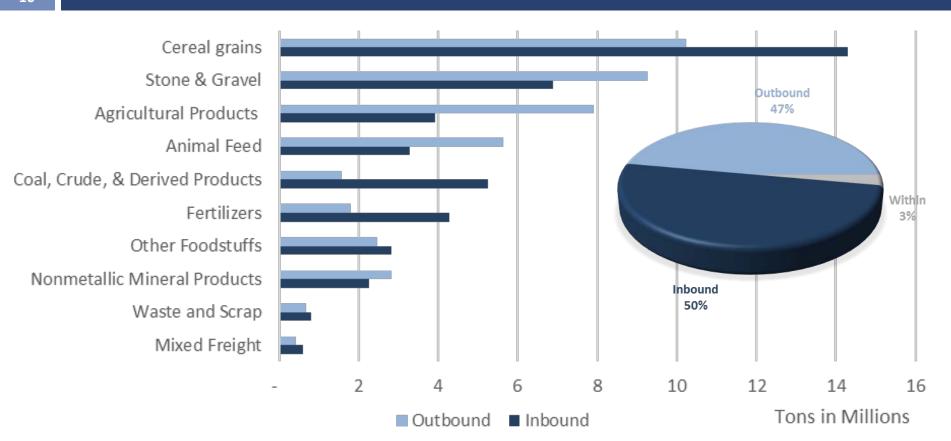
- County to county domestic flows
 - 2-digit STCG or STCC, with focus on key commodities
 - Tonnage and value by mode
- Foreign trade (41 country/country groups)


Private sector BOL data

Equipment type

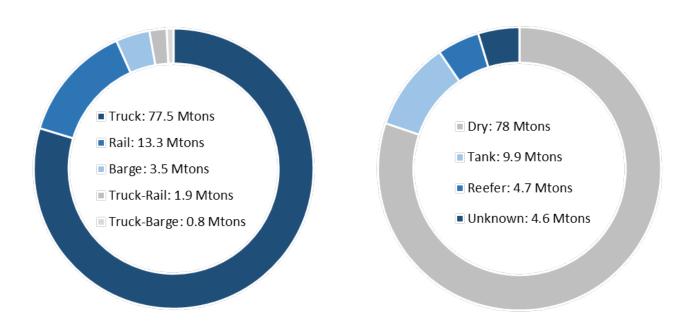
Modal selections

Cost benchmarks



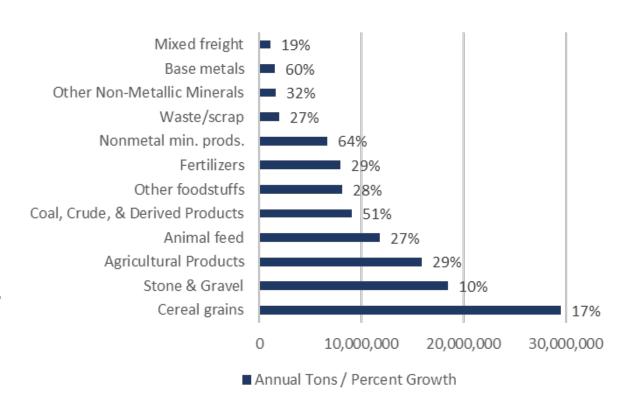
© 2018 Quetica, LLC. All rights reserved

Total- 97 Million tons



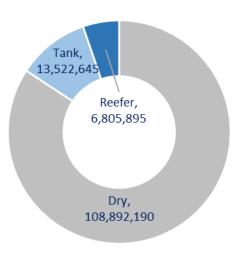
Mid-America Region Freight Flows - Baseline

Your alternative port of entry


80% of the MAIPA Region's freight moves by truck; 66% of the nation's total freight is moved by truck.

Mid-America Freight Flows: 2025

The highest growth commodities for the MAIPA Region are well suited to barge and rail transport


Mid-America Freight Flows: 2025

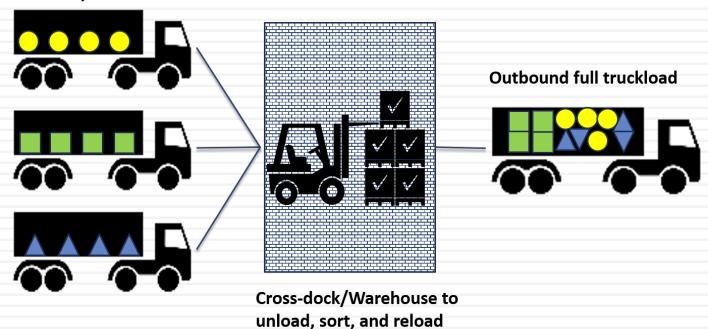
□ 2025 Forecast

Mode	Annual Tons	Share	Change	Percent	CAGR
Truck	97,200,309	75%	19,731,909	25%	2.08%
Rail	21,142,452	16%	7,880,539	59%	4.33%
Barge	5,654,692	4%	1,831,850	48%	3.62%
Truck-Rail	3,416,136	3%	1,486,465	77%	5.33%
Truck-Barge	1,807,141	1%	1,032,798	133%	8.01%
Total	129,220,729		31,963,561	33%	2.62%

EQUIPMENT TYPES

- Dry ↑ 40% vs. baseline
- Tank ↑ 36% vs. baseline
- Reefer ↑ 44% vs. baseline

"What-If" Scenario Analysis


- Objective: Optimize networks to reduce transportation costs
 - Baseline analysis examines opportunities w/o network changes
 - What-if scenarios test network changes/investments
- "What-If" scenario analysis includes
 - Identify locations
 - Size the market
 - Cost savings for lane and total network improvements
 - Cost/Benefit and ROI analysis
- The MAIPA study scope included three scenario runs

Freight Consolidation / Cross-dock Scenario

Inbound partial truckload

Freight Consolidation

- Price differences between full and partial loads can be substantial
 - LTL rates can be up to 4X truckload rates
- Partial container rates up to 3X full container rates
- Consolidation centers can reduce costs, improve equipment utilization and create additional capacity

Freight Consolidation Scenario

- Commodities
- Assumptions
 - Outbound Dry Van Freight Volumes
 - > 500 miles
 - Freight Consolidation/ Cross-dock Fee: \$350
 - Stop-off Fees: \$100/stop

Freight Consolidation **SCTG Product Description** 03 Other ag prods. Animal feed 04 Meat/seafood 05 Milled grain prods. 06 Other foodstuffs 07 Plastics/rubber 24 Wood prods. 26 28 Paper articles Printed prods. 29 Textiles/leather 30 31 Nonmetal min. prods. Articles-base metal 33 35 **Flectronics** Precision instruments 38 39 **Furniture** Misc. mfg. prods. 40 Waste/scrap 41 Mixed freight 43

Freight Consolidation Baseline

□ Top Commodities

Product	Annual Tonnage	Baseline Costs	Optimized Savings	Avg. Length of Haul	Percent
Animal feed	137,591	\$26,393,856	\$5,522,478	1,030	21%
Other ag prods.	74,990	\$18,663,867	\$4,356,195	1,337	23%
Other foodstuffs	23,720	\$6,480,464	\$2,329,855	1,108	36%
Mixed freight	16,262	\$3,920,288	\$1,034,776	1,143	26%
All Others	69,915	\$15,186,994	\$3,195,842	1,115	20%
TOTAL	322,477	\$70,645,469	\$16,439,145	1,124	23%

□ Top Trade Lanes (by savings)

Destination	Annual Tonnage	Baseline Costs	Optimized Savings	Avg. Length of Haul	Percent
Washington	35,831	\$12,021,193	\$3,616,037	2,017	30%
Virginia	31,551	\$7,026,456	\$2,018,185	1,010	29%
Georgia	16,685	\$4,052,943	\$1,624,960	934	40%
Louisiana	59,553	\$9,430,963	\$1,395,766	836	15%
All Others	178,858	\$38,113,914	\$7,784,198	1,005	21%
TOTAL	322,478	\$70,645,469	\$16,439,146	1,026	21%

Freight Consolidation Forecasted

Top Commodities

Product	Annual Tonnage	Growth	Baseline Costs	Optimized Savings	Percent	Avg. Length of Haul
Animal feed	180,837	31%	\$34,525,977	\$7,113,301	21%	1,066
Other ag prods.	101,651	36%	\$25,587,699	\$6,065,048	24%	1,336
Other foodstuffs	33,385	41%	\$9,267,179	\$3,398,883	37%	1,123
Mixed freight	17,573	8%	\$4,246,803	\$1,124,702	26%	1,143
All Others	87,316	25%	\$18,715,744	\$3,912,418	21%	1,122
TOTAL	420,762	30%	\$92,343,402	\$21,614,352	23%	1,132

□ Top Trade Lanes (by savings)

Destination	Annual Tonnage	Growth	Baseline Costs	Optimized Savings	Percent	Avg. Length of Haul
Washington	52,920	48%	\$17,793,900	\$5,355,449	30%	2,016
Virginia	44,510	41%	\$9,916,798	\$2,855,361	29%	1,011
Georgia	23,289	40%	\$5,656,320	\$2,269,058	40%	928
Lousiana	83,074	39%	\$13,144,950	\$1,939,057	15%	835
All Others	216,970	21%	\$45,831,434	\$9,195,427	20%	1,443
TOTAL	420,762	30%	\$92,343,402	\$21,614,352	23%	1,026

Transload Optimization Scenarios

- Transload Scenarios
 - 1. Rail Transload (Rail Unit Train)
 - Truck/Rail to Barge
 - Two Iterations
 - Single Dray, Single Transload
 - Double Dray, Double Transload
 - Two Equipment Types
 - Dry
 - Tanker

Unit Train/Rail Transload Results


Dedicated Train Service

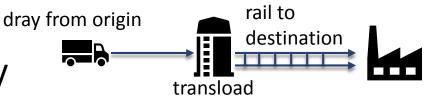
- Excellent for large quantities of single-bulk commodities such as coal, grain, minerals, liquids, special project cargo and oversized commodities (i.e., wind blades)
- Non-stop service between a single origin and destination
- Enhances value of facility and equipment investments

BNSF Website https://www.bnsf.com/customers/how-can-i-ship/dedicated-train-service/

Contemporary Export Grain Supply Chain

Unit Grain Train Facilities in MAIPA Area

The data suggests only a few unit train grain facilities located on the edges of the MAIPA Region:


- Fairfield, IA
- Waverly, IL (2)



Rail Transloading Shipping Cost Savings

□ Transload/Single Dray

	Annual ⁻	Tonnage	Baselin	e Costs	Optimize	d Savings	Per	cent
	2014	2025	2014	2025	2014	2025	2014	2025
Dry	677,185	819,740	\$53,155,360	\$66,988,347	\$20,136,117	\$26,593,178	38%	40%
Tanker	127,174	172,697	\$19,952,532	\$25,826,050	\$11,155,583	\$13,861,316	56%	54%
TOTAL	806,373	994,462	\$73,109,906	\$92,816,422	\$31,293,714	\$40,456,519	43%	44%

	Annual ⁻	Tonnage	Baselin	e Costs	Optimize	d Savings	Perd	cent
	2014	2025	2014	2025	2014	2025	2014	2025
Dry	605,147	745,669	\$48,941,577	\$62,691,634	\$11,602,045	\$16,237,177	24%	26%
Tanker	127,174	172,697	\$19,952,532	\$25,826,050	\$9,502,320	\$11,616,250	48%	45%
TOTAL	734,335	920,391	\$68,896,123	\$88,519,709	\$21,106,379	\$27,855,452	31%	31%

Barge Transload Results

Barge Transloading Summary

Single Dray and Transload

	Annual	Tonnage	Baselin	e Costs	Optimize	d Savings	Perd	cent
	2014	2025	2014	2025	2014	2025	2014	2025
Dry	2,139,018	2,436,392	\$83,959,472	\$96,881,527	\$18,396,734	\$21,959,010	22%	23%
Tanker	209,769	289,635	\$21,503,223	\$28,760,700	\$13,417,906	\$17,781,196	62%	62%
TOTAL	2,348,787	2,726,027	\$105,462,695	\$125,642,227	\$31,814,640	\$39,740,206	30%	32%

Double Dray and Transload

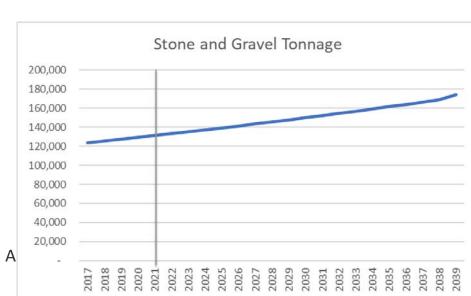
	Annual	Tonnage	Baselin	e Costs	Optimize	d Savings	Perd	cent
	2014	2025	2014	2025	2014	2025	2014	2025
Dry	166,765	201,726	\$10,268,473	\$13,361,711	\$2,628,986	\$3,892,349	26%	29%
Tanker	193,119	265,293	\$20,647,110	\$27,514,046	\$10,823,605	\$14,201,871	52%	52%
TOTAL	359,884	467,019	\$30,915,583	\$40,875,757	\$13,452,591	\$18,094,220	44%	44%

City Dock Project: Conversion of Truck to Barge- Project Costs

Your alternative port of entry

27

Total Project with Property	\$ 8,973,800
Total Improvement including Equip	\$ 8,873,000
Contingencies	\$ 1,035,000
Engineering/Proj Mgmt	\$ 938,000
Sales Tax	
Construction	\$ 6,150,000
Floodplan Mitigation	\$ 1,500,000
Yard	\$ 1,927,000
Track	\$ 746,500
Utilities	\$ 1,240,000
Roads/ Parking	\$ 736,500
Equipment	\$ 750,000
Property Corp of Eng (3.05 ac) + 100' ROW for Rail 500'(1.15 Ac)	\$ 100,800



City Dock Project: BCA Assumptions

Your alternative port of entry

- □ Funding and Construction: 2019-2020
 - Transload operation begin: 2021
- Assumes city dock transload will capture 20% of local *Gravel and Stone* market.
 - Stone and Gravel tonnage grows at 1.5% per year.
 - 2021 1.5 barges/week
 - 2039 2 barges/wk

City Dock Project: Conversion of Truck to Barge- Undiscounted Benefits Summary

Your alternative port of entry

	nd Gravel (20% Market) Savings Category	20 Year Cumulative Benefits	Annualized Benefits in 2021
	Freight savings to shippers	\$17.1 million	\$0.8 million
**	Road Maint and Preservation savings	\$6.6 million	\$0.3 million
	Crash reduction / Safety benefits	\$6.2 million	\$0.3 million
	Truck Miles Reduction	55 million VMT	2.5 million VMT
	Emission reduction benefits	66,000 MT	3,000 MT
	Energy Savings	7.4 million gallons of fuel	0.3 million gallons of fuel

Questions / Contact

Mark Berndt

Quetica, LLC

651-964-4646, ext. 857

email: mark.berndt@quetica.com

