Illinois Comprehensive Truck Size & Weight Study Update

PM: Scott Sanford, P.E., S.E. Tech. Lead: Chad Hodel, P.E., S.E.

Assisted by Kaskaskia Engineering Group & Quigg Engineering

Project History

- 2012: MAP-21 Req'd a USDOT Comprehensive Truck Size & Weight Study
- Summer 2015: USDOT CTSWS Report
- X Data limitations so profound that national impacts cannot be accurately predicted
- TRB Review: More comprehensive/useful response possible w/in resources of the study
 - Inconsistent meas. of impact ≠ combined
 - Omission of roads not on interstate/national network
 - Omission of bridge deck costs

Alternative Truck Configurations

Project History

- IDOT study project approach presented July 2017
- Infrastructure \$\$ impact of 2012 MAP-21 alternative truck configurations (ATC's)

Design Features

- Structures
- Pavements
- Geometrics
- Chokepoints

Network Study

- Interstates
- State Routes
- Local Roads w/in 5

Miles of Interchanges

(extrapolate to others)

Proposed Project Approach

- Overcome USDOT limitations
- Provide 100% coverage of network study
- IL data driven study that facilitates the analysis of bulk data → extrapolate as necessary
- Analysis results linked to GIS

- Modal shift: Potential diversions in freight transport methods
- Intra-modal: Existing trucks → ATC's
- Inter-modal: Non-highway mode → ATC's
- ATC Variables:
 - Magnitude of truck size & weight
 - Frequency of trucks

- USDOT: Factors that affect Modal Shift
 - Size & weight of goods being shipped
 - Magnitude of commodities being shipped with various modes
 - Shipping logistics including origins/destinations
 - Propensity to substitute reduced shipping costs for increased commodities
 - Entire fleets not likely to be shifted to ATC's
 - Price reductions from other modes to retain market share
 - → Complex!!!

- USDOT modal shift results presented as changes in <u>Vehicle Miles Traveled</u> (VMT's)
- Reported for each ATC as a function of operating weight
 - Example USDOT modal shift results:

Table 12: VMT Change by Operating Weight Distributions for Key Vehicle Configurations in Scenario 3 (Millions)

Operating Weight	Base Case				Scenario 3				
(lb.)	3-S2	Oth-CS5	3-S3	Total	3-S2	Oth-CS5	3-S3	Total	
<= 62,000	66,315	8,389	1,183	75,888	66,315	8,389	1,183	75,888	
62,00168,000	10,872	1,784	175	12,831	10,872	1,784	175	12,831	
68,001-74,000	13,593	2,584	187	16,364	13,593	2,584	187	16,364	
74,001-80,000	14,356	2,711	219	17,286	4,729	899	584	6,213	
80,001-86,001	5,597	1,018	181	6,796	637	116	3,759	4,512	
86,001-92,000	1,684	305	141	2,129	195	35	6,060	6,291	
92,001-98,000	661	115	97	874	398	69	6,724	7,191	
>98,000	325	55	69	449	325	55	69	449	
Total	113,952	17,050	2,351	133,353	97,613	14,021	18,841	130,475	

- Project approach: incorporate USDOT modal shift results
- WHKS: changes in VMT's considered to be reflection in number of vehicles on the roadway
 - Est. number of impacted truck types operating in IL within USDOT ATC weight ranges
 - Calc. USDOT modal shift factors to reflect shifts in traffic
 - Correlate to MU data (readily available info.)

Est. # of exist. impacted trucks w/ WIM data

IDOT WEIGH STATION INFORMATION								
Number	Weigh Station Location / Name	Route	IDOT District	WIM Data				
1	Rosecrans SB	US 41	1	No				
2	Harvard	US 14	1	No				
3	Villa Park	IL 83	1	No				
4	Carlock EB	I-74	3	Yes				
5	Richmond	US 12	1	No				
6	Bolingbrook SB	I-55	1	Yes				
7	East Moline EB	I-80	2	Yes				
8	Chicago Heights	US 30	1	No				
9	Wadsworth	US 41	1	No				
10	Frankfort WB	I-80	1	Yes				
11	Compton	US 30	2	No				
12	Moline WB	I-74/280	2	Yes				
13	Peotone NB	I-57	1	Yes				
14	Marion NB	I-57	9	Yes				
15	Brownstown EB	I-70	7	Yes				
16	Bolingbrook NB	I-55	1	Yes				
17	Sheldon	US 24/52	3	No				
18	Marion SB	I-57	9	Yes				
19	East Moline WB	I-80	2	Yes				
20	Pittsfield	US 36/54	6	No				
21	Marshall WB	I-70	5	Yes				
22	Moline EB	I-74/280	2	Yes				
23	Peotone SB	I-57	1	Yes				
24	Carlock WB	I-74	3	Yes				
26	Frankfort EB	I-80	1	Yes				
31	Maryville WB	I-55/70	8	Yes				
32	Litchfield	I-55	6	Yes				
34	Williamsville SB	I-55	6	Yes				
35	O'Fallon EB	I-64	8	Yes				

- WIM results for each IDOT District avg.'d
- ATC's 1-3 for District 8 shown below
- ATC's 4-6 & other Districts similar

ESTIMATED MODAL SHIFT RESULTS - DISTRICT 8 AVERAGE													
			ATC Scenario #										
1					2				3				
lte:	n	Avg.	Max.	Min.	Std. Dev.	Avg.	Max.	Min.	Std. Dev.	Avg.	Max.	Min.	Std. Dev.
3-S2	# Trucks	15,292	52,524	459	7,498	10,769	27,371	836	4,024	11,276	38,617	337	5,560
Leaving	% MU's	12.63	30.85	0.31	4.51	9.09	15.15	0.58	2.04	9.30	22.68	0.22	3.35
Oth-CS5	# Trucks	61	218	2	38	1,371	3,484	98	652	1,353	4,847	28	840
Leaving	% MU's	0.05	0.15	0.00	0.02	1.14	2.37	0.07	0.38	1.10	3.39	0.02	0.53
3-S2	# Trucks	13,962	48,186	411	6,982								
Entering	% MU's	11.51	27.39	0.27	4.20								
3-S3	# Trucks					11,178	28,411	880	4,270	10,749	36,996	315	5,411
Entering	% MU's					9.43	15.32	0.60	2.18	8.85	22.19	0.21	3.26

- Service Life ←→ Axle Weight ←→ Frequency
- USDOT: AASHTO Pavement ME Design Software
 - $-\Delta$ in traffic, time, distress (rutting, faulting, etc.)
 - X does not analyze asphalt overlays (OL)
 - $-\Delta$ Orig. Life \rightarrow 12 year OL \rightarrow 12 year OL.....

Table 12: Service Interval and Life Cycle Cost Percent Changes by Scenario								
Scenario	1	2	3	4	5	6		
% Change in Service Interval	-0.3	+2.7	+2.7	-1.6	-0.0	-0.1		
% Change in LCC	+0.4 to +0.7%	-2.4 to -4.2%	-2.6 to	+1.8 to +2.7%	+0.1 to +0.2%	+0.1 to +0.2%		

X - Cannot combine results w/ other cost impacts

Why is OL performance of interest for IL study?

- Fortunate that IDOT Bureau of Research has a large database of interstate data
 - Construction history:
 - Original pavement type & completion date
 - Overlay history & date

- Traffic history
 - PV, SU, & MU
 - Design lane distribution factors
- Facilitates an IL data driven analysis

- IL data assessments of orig. pavement and subsequent OL's
 - Service life (years)
 - Traffic loading (ESAL's)
- <u>Equivalent Single Axle Loadings</u>
 - Indication of # of axle load repetitions
 - Various vehicles normalized to an 18 kip axle load

ESAL Values

- Example of historical data analysis
 - Trends of decreased service life w/ increased ESAL

- Interstate Pavement Analysis Procedure
 - Forecast traffic data to 2060
 - Calculate ESAL each year for exist. traffic configuration
 - Recalc. ESAL each year for ATC & Modal Shift by modifying exist. ESAL

- Historical performance data used to calc. service lives of orig. pavement/OL's through 2060
 - ESAL's of exist. traffic configuration
 - ESAL's w/ modal shift and ATC's
- Δ Total = Δ Orig. Pav't + Δ OL #1 + Δ OL #2 +....
- △ OL #2 = Serv. Life (Exist.) Serv. Life (ATC)

August 8, 2019

Example Prelim. Interstate Results - Route Specific - ATC #3

Example Prelim. Results for All Interstates

Example Prelim. Results for All Interstates

State Routes:

- Quality of historical data is not nearly as good as for interstate routes
- Rather than contract data, spans of past service lives based upon significant jumps in Condition Rating Survey data
- Performing an analysis similar to the interstates

Local Roads:

- Data is significantly lacking
- Working to potentially estimate cost impacts using a database of historical maintenance costs

- Analysis of Interchanges & Intersections
- Ability to accommodate ATC turning characteristics
- Potential of ATC's to impede traffic flow
- Intersection/Interchange <u>Level Of Service</u>:
 - Traffic quality ← → given flowrate
- LOS: A → F → speed, travel time, density, etc.

- Facilities Analyzed:
 - 24 Interchanges
 - 30 Intersections

Various types and control methods

- Key parameter for assessing LOS:
- Demand flow rate, $v_p = \frac{V}{PHF \times N \times f_{HV} \times f_p}$
- V = demand volume
- fhv = heavy vehicle factor
 → assigns Passenger Car Equivalent values to truck traffic (longer, heavier, slower)
- 0 < fhv < 1.0
- Truck traffic ↑ → fHV ↓ → Vp ↑

- Default Avg. PCE = 1.5 (reflects avg. truck traffic)
- Modal Shift Analysis: impacted trucks heavier than avg. → PCE > 1.5
- Sample fhy modification (qualitative example):

Sample fhy modification:

- For ATC's 1-3, no change in W/HP
 - \rightarrow PCEcv = PCEatc (no \triangle length)
 - fhv only affected Δ # trucks
- IF a base HP of 485 is assumed:

PCE: Rural 4-Lane Interstate - 0% Grade						
CV #1	2.7					
ATC #1	2.9					
ATC #2	2.9					
ATC #3	3.1					

$$fHV = \frac{\text{Exist. Avg. MU}}{\text{1.5}} \text{*MU} - \frac{\text{Exist. CV Leaving}}{\text{PCE}_{CV}} \text{*CV}_{L}$$

 For ATC's 4-6, no change in W/HP (note ∆ length)

PCE: Rural 4-Lane Interstate - 0% Grade					
CV #2	2.6				
ATC #4	2.7				
ATC #5	3.2 (HP=588)				
ATC #6	3.6 (HP=588)				

IF a base HP of 485 is assumed:

PCE: Rural 4-Lane Interstate - 0% Grade						
CV #2	2.6					
ATC #4	2.7					
ATC #5	3.5					
ATC #6	3.8 (HP=520)					

- Capacity Analysis Results:
 - Est. modal shift & Δ key parameters not significant enough to cause an appreciable Δ's in time in where there are shifts in the LOS
 - Req'd modal shift to change f_{HV} and LOS is substantially greater than USDOT prediction

 Operational Characteristics

- Navigating turns
- Lane encroachment
- Wheel dropping

AutoTurn Analysis

- AutoTurn Analysis:
 - ATC swept path typ. enveloped by CV's
 - Generally no net effect of the ATC's

- Assuming legislative acceptance of ATC's → "Routine Commercial Traffic" (Legal Loads)
- Fortunate that IDOT maintains a comprehensive bridge rating database
 - → Attempted to rate nearly every state maintained structure modeled in database
 - → Approx. 6,000 structures
 - → Primarily focus on structures > 20 ft length
- Local Roads: rated approx. 1,450 structures → extrapolated ratings to 14,950 structures

Interstates

 ATC/CV Rating Factor Ratios

- ATC-RF ≥ 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF < 1.0
- ATC-RF ≥ 1.0, CV-RF < 1.0

State Routes

 ATC/CV Rating Factor Ratios

- ATC-RF ≥ 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF < 1.0
- ATC-RF ≥ 1.0, CV-RF < 1.0

- Local Roads <u>w/in 5-miles</u> of interchanges
- ATC/CV Rating Factor Ratios
- (___) = Software Rated
- __ = Extrapolated Rating

- ATC-RF ≥ 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF < 1.0
- ATC-RF ≥ 1.0, CV-RF < 1.0

- Local Roads <u>o/s 5-miles</u> of interchanges
- ATC/CV Rating Factor Ratios
- (___) = Software Rated
- __ = Extrapolated Rating

- ATC-RF ≥ 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF ≥ 1.0
- ATC-RF < 1.0, CV-RF < 1.0
- ATC-RF ≥ 1.0, CV-RF < 1.0

- Bridge Decks:
- X-USDOT: no readily accepted model
- TRB: doing something is better than nothing
- IDOT Study: Use historical deck replacement data
- → Deck life prediction model using: ESAL, Longest Span, Latitude, and District
- Approx. 7,500 slab-beam type bridges in GIS → approx. 1,200 w/ significant MU data

ATC #1 prelim. results - 1,200 structures w/ sig. MU data

ATC #1 prelim. results - 1,200 structures w/ sig. MU data

ATC #1 prelim. results – 7,500 structures

ATC #1 prelim. results – 7,500 structures

Ongoing Efforts

- Continuing state route/local road pav't analysis
- Analysis checking
- Assessing \$\$ impacts → including combining \$\$ impacts various ATC's
- Draft Report: present results and document our analysis procedure
- Final Report to IDOT anticipated end of 2019
- Logging data and results in GIS

Questions?

